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SUMMARY

Transcription is an episodic process characterized
by probabilistic bursts, but how the transcriptional
noise from these bursts is modulated by cellular
physiology remains unclear. Using simulations and
single-molecule RNA counting, we examined how
cellular processes influence cell-to-cell variability
(noise). The results show that RNA noise is higher in
the cytoplasm than the nucleus in �85% of genes
across diverse promoters, genomic loci, and cell
types (human and mouse). Measurements show
further amplification of RNA noise in the cytoplasm,
fitting a model of biphasic mRNA conversion
between translation- and degradation-competent
states. This multi-state translation-degradation of
mRNA also causes substantial noise amplification
in protein levels, ultimately accounting for �74% of
intrinsic protein variability in cell populations. Over-
all, the results demonstrate how noise from tran-
scriptional bursts is intrinsically amplified by mRNA
processing, leading to a large super-Poissonian vari-
ability in protein levels.

INTRODUCTION

Intracellular biological reactions can exhibit large intrinsic fluctu-

ations (i.e., stochastic ‘‘noise’’) that manifest as cell-to-cell vari-

ability, even in isogenic populations of cells (Blake et al., 2003;

Elowitz et al., 2002; Kaern et al., 2005; Kepler and Elston,

2001). These intrinsic stochastic fluctuations partly originate

during transcription (Golding et al., 2005; Raj et al., 2006), are

subject to strong evolutionary selection pressures (Fraser

et al., 2004; Metzger et al., 2015), and drive cell-fate decisions

(Balázsi et al., 2011; Suel et al., 2007; Weinberger et al., 2005).

Transcriptional fluctuations can be largely due to the episodic

nature of transcription, commonly called ‘‘bursting,’’ in which

short periods of productive promoter activity are interspersed

between long periods of promoter inactivity (Chong et al.,

2014; Coulon et al., 2013; Dar et al., 2012; Golding et al., 2005;
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Raj et al., 2006; Sanchez and Golding, 2013; Singh et al., 2010;

Suter et al., 2011; Zenklusen et al., 2008). These episodic tran-

scriptional bursts appear to be predominant in mammalian cells,

especially at low transcript abundance (Dar et al., 2012; Raj et al.,

2006). In the common transcriptional bursting model, the ‘‘two-

state random-telegraph’’ model, a promoter toggles between a

transcriptionally inactive OFF state and an active ON state (Kep-

ler and Elston, 2001). While more than two promoter states may

exist, all multi-state transcription models generate super-Pois-

sonian cell-to-cell distributions (high noise) in mRNA and protein,

especially for the relatively slow toggling rates measured for

many promoters (Harper et al., 2011; Zenklusen et al., 2008).

These transcriptional bursting models contrast with minimally

stochastic, single-state (i.e., constitutive) transcription models,

which are Poisson processes and generate Poisson distributions

for cell-to-cell variability in gene products. These Poisson distri-

butions represent the theoretical low-noise limit for gene expres-

sion (Kaern et al., 2005), but more complex multi-state models

(e.g., random-telegraph models) are required to fit the vast ma-

jority of measured cell-to-cell expression distributions, which

are super-Poissonian (Sanchez and Golding, 2013). Variability

in the abundance of nascent transcripts—those still tethered to

DNA at the transcriptional center (TC)—can fall under the Pois-

son limit (Choubey et al., 2015) because this scenario is not a

Poisson process but a special case of an age-structured process

described by a particular form of the gamma distribution called

an Erlang distribution (Mittler et al., 1998). Nevertheless, once

transcripts are released from the DNA, the process returns to a

Poisson process and can no longer be considered age struc-

tured. Thus, after nascent transcripts are released from the

DNA, the distributions are, at best, Poisson limited.

The noise that originates during transcription can be modu-

lated by various cellular mechanisms. For example, translation

often amplifies transcriptional bursting noise (Ozbudak et al.,

2002), and auto-regulatory gene circuits can, depending upon

their architecture, either amplify or attenuate noise for their spe-

cific target genes (Arias and Hayward, 2006; Austin et al., 2006;

Barkai and Leibler, 2000; Isaacs et al., 2003). However, recent

studies have suggested that transcriptional noise is efficiently

and non-specifically buffered to minimal Poisson levels by ‘‘pas-

sive’’ cellular compartmentalization, specifically nuclear export

(Battich et al., 2015; Stoeger et al., 2016). The resulting conun-

drum is, if compartmentalization broadly buffers noise tominimal
). Published by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. The Random-Telegraph Model of Gene Expression Predicts That mRNA Noise Is Amplified by Nuclear-to-Cytoplasmic Export

(A) Schematic representation of the conventional model of eukaryotic mRNA transcription expanded to include both nuclear and cytoplasmic compartments.

(B) Representative distributions of nuclear (dashed lines) and cytoplasmic (solid lines) mRNA for parameter combinations yielding noise attenuation (blue),

unchanged noise (black), and noise amplification (red). Distributions are from 1,000 simulations per parameter condition.

(C) Mean versus CV2 for nuclear (squares), expected cytoplasmic (gray circles) and cytoplasmic (colored circles) mRNAs, corresponding to each distribution in

(B). Bar graphs show the expected cytoplasmic CV2 due to Poisson scaling and the actual cytoplasmic CV2.

(D) Mean versus s2/m (Fano factor) for both nuclear (squares) and cytoplasmic (circles) mRNAs, corresponding to each distribution in (B).

(E) Comparison of nuclear versus cytoplasmic mRNA noise (s2/m).

(F–H) Nuclear-to-cytoplasmic noise ratio (Noisecyt/Noisenuc) simulated for the physiologically possible parameter space, as calculated by varying each parameter

from its highest-reported to its lowest-reported value (1,000 simulations run per parameter combination; >7 million runs). Increasing red represents increasing

(legend continued on next page)
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levels, how can noise drive cell-fate decisions? Moreover, how

are transcriptional regulatory circuits able to modulate noise—

i.e., attenuate (Arias and Hayward, 2006) or amplify (Weinberger

et al., 2005) noise—when nuclear export acts as a strong down-

stream filter reducing noise to the theoretical limit?

Given the literature reporting super-Poissonian cytoplasmic

mRNA and protein noise in nucleated eukaryotic cells, we

sought to reconcile how evidence of super-Poissonian noise

could co-exist with nuclear export passively and broadly buff-

ering noise to minimal levels. Since we are specifically con-

cerned with understanding how transcriptional fluctuations

(i.e., bursts) are influenced by downstream processing (i.e., nu-

clear export), we examine the normalized variance of mRNA

counts (a.k.a. Fano factor), the typical measure of transcrip-

tional bursting (Blake et al., 2003; Munsky et al., 2012; Ozbudak

et al., 2002; Sanchez and Golding, 2013). Using computational

modeling and single-molecule quantitation by RNA fluores-

cence in situ hybridization (FISH), we predict and then experi-

mentally measure mRNA noise in the nucleus and cytoplasm.

We model across the known physiological parameter range

and find that in the vast majority of cases (�85%), mRNA noise

is amplified by export from the nucleus and is super-Poissonian

in the cytoplasm. Single-molecule fluorescence in situ hybridi-

zation (smFISH) measurements corroborate this finding for

diverse promoters (long terminal repeat [LTR], ubiquitin C

[UBC], elongation factor [Ef]-1a, Simian virus 40 [SV40], JUN,

FOS, COX-2, FOXO1, PER1, NR4A2, and Nanog) in different

cell types. As predicted by modeling, modulation of nuclear

export has little effect in changing this amplification. The

smFISH measurements and perturbation experiments indicate

a further post-export step of noise amplification for cytoplasmic

mRNA, which supports mRNA translation and degradation be-

ing mutually exclusive and is characterized by biphasic mRNA

degradation. Finally, we present a model that quantifies how

mRNA fluctuations originating at the promoter are amplified in

the cytoplasm compared to the nucleus and predicts super-

Poissonian protein noise from transcriptional measures. Overall,

the findings demonstrate that transcriptional noise is intrinsi-

cally amplified in cells, showing how noise can act as a driving

force in cell-fate decisions.

RESULTS

The Standard Model of Gene Expression Predicts That,
in the Physiological Parameter Regime, Transcriptional
Bursts Are Often Amplified in the Cytoplasm Compared
to the Nucleus
To explore how cellular physiology influences gene expression

noise, we used Gillespie’s method (Gillespie, 1977) to perform

stochastic numeric simulations of a conventional model of eu-

karyotic mRNA transcription (Dar et al., 2014; Raj et al., 2006;

Raser and O’Shea, 2004; Suter et al., 2011) expanded to include
noise amplification, while increasing blue represents increasing noise attenuatio

a subpanel of (G) shows how varying kon and koff across the full range of reported va

of (H), shows how varying ktx across its full range of reported values affects the

simulation results where the array of kon-koff-ktx simulations is varied over the full

measurements) is marked by the black box, whereas the cyan box (<4% of mea

See also Figures S1 and S2.
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both the nuclear and cytoplasmic compartments (Figure 1A).

Since most genes are co-transcriptionally spliced (Tilgner

et al., 2012), splicing was incorporated into the transcription

rate. A total of 7,776 (65) parameter combinations were exam-

ined—with 1,000 simulations run per parameter combination

(i.e., over 7 million simulation runs)—allowing us to vary the

rate of each cellular process (e.g., transcription, export, and

decay) over several orders of magnitude based on literature

estimates (Bahar Halpern et al., 2015a; Bahar Halpern et al.,

2015b; Battich et al., 2015; Dar et al., 2012; Harper et al.,

2011; Suter et al., 2011). Mean (m) and variance (s2) in mRNA

counts were determined for both nuclear and cytoplasmic com-

partments (Figures S1A and S1B), allowing for subsequent noise

quantification.

When comparing mRNA noise in the nucleus and cytoplasm,

three scenarios are possible: (1) noise can be lower in the cyto-

plasm than in the nucleus (i.e., attenuated) (Figure 1B, blue); (2)

noise can be the same in both compartments (i.e., unchanged)

(Figure 1B, gray); or (3) noise can be higher in the cytoplasm

than in the nucleus (i.e., amplified) (Figure 1B, red).

Importantly, there are subtle but critical differences between

the possible measures for noise, with the ideal quantification

method depending on the question being addressed. For

example, if the underlying distribution is of importance, then

statistics such as the KS (Kolmogorov-Smirnov) test could be

used. On the other hand, if the frequency of the fluctuations

is important, then autocorrelation functions should be quanti-

fied. The coefficient of variation (CV2 = s2/m2) is an intuitive

measure of fluctuation size with respect to the mean. However,

its main drawback is that both mean and CV2 need to be taken

into consideration for any comparative analysis. Therefore, a

decrease in CV2 when comparing cytoplasmic to nuclear

mRNA distributions does not necessarily translate to attenua-

tion of promoter toggling noise because CV2 scales inversely

with the mean. To correctly interpret decreased CV2 as an

attenuation of transcriptional bursting, a scaling factor for the

change in mean must be taken into account (Figure 1C,

dashed ‘‘expected’’ line). In other words, a decrease in CV2

is only an effective attenuation of transcriptional bursts if the

decrease is greater than what would be obtained by a simple

scaling of the mean such that CV2
cytoplasm < CV2

expected (i.e.,

attenuated noise only occurs when the CV2 falls below the ‘‘ex-

pected’’ dashed diagonal in Figure 1C, left). In contrast, a

direct measure of changes in transcriptional bursting is typi-

cally calculated by variance over the mean (s2/m; a.k.a, the

Fano factor) (Blake et al., 2003; Munsky et al., 2012; Ozbudak

et al., 2002; Sanchez and Golding, 2013; Thattai and van Ou-

denaarden, 2001), which omits the somewhat complex scaling

properties of CV2 (see STAR Methods: Analytical Arguments

for Protein Noise Dependence on Fano Factor versus CV2,

for an in-depth mathematical explanation). Consequently, the

Fano factor automatically provides a measure of both the
n, and white represents no change in noise from nucleus to cytoplasm. (F),

lues, affects the noise ratio (all other parameters are kept fixed). (G), a subpanel

noise ratio for the array of kon-koff simulations. (H) represents the full set of

reported range of kexp and kdeg values. The probable parameter space (70% of

surements) represents the regime of efficient buffering.
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Figure 2. Single-Molecule mRNA Counting Shows Amplification of Noise in the Cytoplasm, Independent of Promoter Type and

Genomic Locus

(A) Schematic of reporter constructs used to expressmRNAs from the HIV-1 LTR promoter in isoclonal populations of human T lymphocytes (Jurkat) and from the

UBC, SV40, and EF-1a promoters in isoclonal populations of human myeloid leukemia cells (K562).

(B) Representative smRNA FISH micrograph of an isoclonal T-lymphocyte population (maximum intensity projection of 15 optical sections, each spaced 0.4 mm

apart) where DNA has been DAPI stained (purple), andmRNAs (white dots) are GFPmRNAs expressed from a single lentiviral-vector integration of aGFP-reporter

cassette. Scale bar represents 5 mm, and the arrows point toward two similarly sized cells that show high variability in mRNA levels.

(C) The typical probability distribution of cytoplasmic and nuclear mRNA numbers for a singlemRNA reporter species (e.g., GFPmRNA) in an isoclonal population

of T cells after extrinsic-noise filtering.

(D) Expected (gray) versus measured (from smFISH, black) cytoplasmic CV2 of mRNAs expressed from all four promoters.

(legend continued on next page)

Cell Systems 7, 384–397, October 24, 2018 387



magnitude of fluctuations and deviation from a Poisson pro-

cess (where s2/m = 1) and arguably provides a more direct

and concise measure of noise propagation during mRNA pro-

cessing. For example, attenuation of transcriptional noise

from downstream mRNA processing corresponds to s2/m ap-

proaching a Poisson process (where s2/m = 1), while amplifica-

tion of transcriptional noise corresponds to s2/m increasing and

diverging from a Poisson process (Figures 1D and 1E). Hence,

to understand how the downstream propagation of transcrip-

tional noise is modulated, we focus on changes in the Fano

factor, the typical measure of transcriptional bursting (Blake

et al., 2003; Munsky et al., 2012; Ozbudak et al., 2002; San-

chez and Golding, 2013; Thattai and van Oudenaarden, 2001).

We examined the noise ratio—Noisecytoplasm/Noisenucleus (i.e.,

Fanocytoplasm/Fanonucleus, which is equivalent to CV2
cytoplasm/

CV2
expected)—for all 7,776 parameter combinations (Figures

1F–1H). The results show that for most combinations of physio-

logically relevant parameters, mRNA noise is largely amplified in

the cytoplasm compared to the nucleus (Figures 1F–1H, red

rectangles). Moreover, the possible physiological parameter

space can be further limited to a probable regime using previ-

ously reported genome-wide mRNA counts (Bahar Halpern

et al., 2015a). Namely, the reported nuclear and cytoplasmic

mRNA counts were used to estimate likely ratios of mRNA

export-to-degradation rates (Figure S1C and Equations 2, 3,

4, 5, and 6 in STAR Methods), which largely determine whether

noise is amplified, unchanged, or attenuated. This data

constraint is applied to generate a probable physiological

parameter regime in which amplification becomes even more

prevalent (Figures 1H and S1D, black box). Specifically, about

15% of genes across the genome show >20-fold higher export

rates than degradation rates, thus falling within the parameter

regime of highly amplified cytoplasmic noise. Another 70%

of genes across the genome have significantly faster rates of

export than degradation, also falling in the parameter regime of

amplification. Finally, only �15% of genes across the genome

fall in the parameter regime in which the rate of export is slower

than cytoplasmic mRNA degradation, of which less than 4%

have rates where substantial noise attenuation (>5-fold) is even

possible (Figure 1H, light blue box). Thus, the data constraints

show that �85% of genes fall in the parameter regime in which

noise is amplified in the cytoplasm and only about 2.5% of genes

fall in the parameter regime where noise is attenuated down to

minimally stochastic Poisson levels—substantially less than pre-

viously implied (Battich et al., 2015). A discrete diffusionmodel of

nuclear export does not alter these results (Figures S1E–S1G

and S2A–S2D).

Analytically, a fairly simple expression for the Fano factor ratio

between cytoplasm and nucleus can be obtained (see STAR

Methods: Analytical Derivation):

Noisecyt

Noisenuc

=
hCi
hNi

xcyt

xnuc
(Equation 1)
(E) MeanmRNA expression (m) versus noise (s2/m) for both nuclear (squares) and cy

represent SEM. The minimal noise defined by a Poisson process is shown as a p

(F) Comparison of nuclear versus cytoplasmic mRNA noise (from smFISH) for all p

from the nucleus to the cytoplasm. Data points are the mean of two biological re

See also Figure S3.
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where hNi and hCi are the mean mRNA abundances in the nu-

cleus and cytoplasm, respectively, while xcyt and xnuc are the

noise bandwidths (Simpson et al., 2003) in the cytoplasm and

nucleus, respectively. In both cases, the noise bandwidth is

dominated by the lowest critical frequency it is associated

with (i.e., either the critical frequency of promoter toggling or

mRNA export for xnuc, and either the critical frequency of pro-

moter toggling, mRNA export, or degradation for xcyt). Intui-

tively, this means that xnuc R xcyt, since xcyt can be dominated

by the additional critical frequency associated with degradation,

which has no impact on xnuc. Therefore, for all cases Equation 1

reduces to
Noisecyt
Noisenuc

%hCi
hNi, and when hCi>hNi, Noisecyt

Noisenuc
<1 only for a

small parameter regime where the noise bandwidth in the cyto-

plasm is sufficiently smaller than it is in the nucleus. As a result,

there is a strong tendency for Noisecyt > Noisenuc when hCi>hNi
(Bahar Halpern et al., 2015a). Given previous reports that most

genes exhibit hCi>hNi, most genes are expected to fall in the

amplification regime as the numerical simulations show

(Figure 1H).

Single-Molecule mRNA Quantification Shows
Generalized Amplification of Noise in the Cytoplasm
To experimentally test the model predictions that noise is

generally amplified in the cytoplasm, we used smFISH to quan-

tify individual mRNA transcripts in both the nucleus and cyto-

plasm. To span across the physiological parameter regime,

we examined both a panel of GFP-expressing reporter con-

structs that exhibit widely different transcriptional bursting

and expression rates (Figure 2), as well as endogenous

genes JUN, FOS, COX-2, PER1, FOXO1, NR4A2, and Nanog

(Figure 3).

For the reporter constructs, lentiviral vectors were used to

semi-randomly integrate the reporters into the genome, and iso-

clonal populations were generated from individual transduced

cells such that each isoclone carried a single promoter inte-

grated at a unique genomic locus. This approach controls for

the effect of a specific genomic locus on both noise levels

(Becskei et al., 2005) and the localization of nuclear transport

machinery (Casolari et al., 2004) by allowing for analysis of the

same promoter at multiple genomic loci. The reporter constructs

(Figure 2A) used a range of both human and viral promoters,

including the human UBC promoter, which drives an essential

cellular housekeeping gene and results in abundant protein

expression across integration sites and cell types (Kim et al.,

1990); the human EF-1a promoter, a stronger constitutive pro-

moter also expressing an essential cellular housekeeping gene;

the HIV-1 LTR promoter, an inducible and exceptionally bursty

viral promoter; and the SV40 promoter, a viral promoter that is

far less bursty than the LTR promoter (Dar et al., 2012; Gilbert

et al., 2013).

Isoclonal populations were imaged using three-dimensional

(3D) confocal microscopy (Figures 2B, S3A, and S3B), and indi-

vidual mRNA molecules were quantified to give the number of
toplasmic (circles) mRNAs. Data points are biological replicates, and error bars

urple line (s2/m = 1).

romoters (LTR, UBC, EF-1a, and SV40) shows that noise is primarily amplified

plicates, and error bars represent SEM.
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Figure 3. Endogenous Genes Exhibit Ampli-

fication of mRNA Noise from the Nucleus to

the Cytoplasm

(A and B) smFISH analysis, post-extrinsic-noise

filtering, for PER1, NR4A2, FOXO1, JUN, FOS, and

COX-2 mRNAs in human embryonic kidney cells

(293)and forNanogmRNAinmouseembryonicstem

cells. Data points are biological replicates, and error

bars represent SEM. (A) Expected versus measured

cytoplasmic CV2 of expressed mRNAs. (B) Mean

mRNA expression (m) versus noise (s2/m) for both

nuclear (squares) and cytoplasmic (circles) mRNAs.

(C)Comparisonofnuclear versuscytoplasmicnoise

(from smFISH) for PER1, NR4A2, FOXO1, JUN,

FOS, COX-2, and Nanog shows that cytoplasmic

mRNA noise is primarily amplified. Data points are

biological replicates, and error bars represent SEM.
mRNAs per cell, which in turn allowed quantification of the Fano

factor. Cells were then analyzed with a series of extrinsic-noise

filtering steps that eliminate contributions to the Fano factor

arising from external stimuli (Raj et al., 2006). Consistent with

previous observations (Padovan-Merhar et al., 2015), analysis

of correlation strength between cellular volume, shape, and

DNA-stain intensity with mRNA count indicated that cell size

was the strongest measure of extrinsic noise (i.e., mRNA copy

number scales most tightly with cell size) (Figures S3C–S3F).

Consequently, our analysis focused primarily on size-dependent

extrinsic-noise filtering, as done in similar genome-wide ana-

lyses in yeast (Newman et al., 2006). To confirm that the

extrinsic-noise filtering efficiently removes predictable (extrinsic)

noise, we identified 10 cell components from our imaging and

performed multi-linear regression (MLR) on both nuclear and

cytoplasmic mean mRNA counts (Figure S3G). We then per-

formed MLR-filtering (see STAR Methods for specifics) so that

the prediction strength (i.e., R2) of our MLR model drops below

0.1 (Figures S3H–S3I). Comparing noise values of MLR-filtering

and our extrinsic noise filtering (Figure S3J) shows that, as ex-

pected, we efficiently filter out the predictable noise. Nuclear

and cytoplasmic mRNA counts were measured through 3D im-

age analysis and DAPI staining of nuclear DNA. Frequency distri-

butions (Figure 2C) were obtained for each isoclonal population

of cells (minimum of�100 cells, asmuch lower cell counts signif-

icantly increased the calculated Fano factors by increasing the

effect of outliers) (Figure S3E).

As predicted by the simulations (Figure 1) and analytic argu-

ments (Equation 1), smFISH mRNA quantifications largely

show amplification of mRNA noise in the cytoplasm relative to

the noise in the nucleus; in virtually all cases, the CV2 of cyto-

plasmic mRNA is significantly higher than expected from Pois-

son scaling (Figure 2D), with all data falling far above the mini-
Cell S
mally stochastic Poisson noise (Fano

factor = 1) for all promoters (Figure 2E).

The SV40 promoter was the only pro-

moter with comparable mRNA noise in

the nucleus and cytoplasm, although it

still generated mRNA noise far from Pois-

sonian in both the nucleus and cyto-

plasm. Direct comparison of cytoplasmic
versus nuclear noise for all four promoters (16 genomic loci)

shows that in most cases the cytoplasmic noise was significantly

amplified relative to nuclear noise (Figure 2F), with the data falling

within the parameter space that most genes were predicted to

fall (Figure S1D). This generalized amplification of mRNA noise

in the cytoplasm occurs despite very different mRNA mean

and noise levels.

To further validate these results, smRNA FISH was performed

on seven endogenous genes in adherent cell lines (mouse em-

bryonic stem cells and human embryonic kidney cells). These

measurements encompass a circadian clock gene (PER1), a

gene constitutively expressed in the pluripotent state (Nanog),

and five signal-responsive genes (three immediate-early

response genes JUN, FOS, and NR4A2; the forkhead transcrip-

tion factor, FOXO1; and a late-response gene COX-2). Consis-

tent with data from non-adherent cell lines (Figure 2), the major-

ity of these genes exhibit cytoplasmic mRNA noise that is

amplified relative to nuclear noise (i.e., CV2 larger than expected

from Poisson scaling) and is far above the minimally stochastic

Poisson limit (Figures 3A and 3B). While NR4A2, COX-2, and

FOS have a similar number of mRNAs in the nucleus and cyto-

plasm, Nanog, PER1, FOXO1, and JUN have higher cyto-

plasmic than nuclear means (Figure 3B). Five of the genes

show higher cytoplasmic than nuclear noise and fall in the

amplification regime, FOXO1 falls in the unchanged regime,

and NR4A2 is the only gene that shows slight attenuation of

cytoplasmic mRNA noise compared to nuclear mRNA noise

(Figure 3C). Thus, in agreement with theoretical predictions

(Figure 1 and Equation 1), experimental observations show

that the majority of genes exhibit amplification of mRNA noise

in the cytoplasm compared to the nucleus, especially when

the mean cytoplasmic abundance is greater than the mean nu-

clear abundance.
ystems 7, 384–397, October 24, 2018 389
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Figure 4. SlowedNuclear Export CanCause

Apparent Attenuation of Nuclear versus

Cytoplasmic RNA Noise by Amplifying Nu-

clear RNA Noise and Not Decreasing Cyto-

plasmic RNA Noise

(A) Simulations predict that slowing the nuclear

export rate shifts the nuclear-to-cytoplasmic noise

ratio by affecting nuclear noise.

(B and C) smFISH analysis of HIV LTR-expressed

mRNA in isoclonal cells treated with the nuclear-

export inhibitor leptomycin B (green). In (B), nuclear

mean and noise increase, whereas in (C), cyto-

plasmic mean or noise remains unchanged (gray).

(B) Significance levels are *p<0.05and ***p<0.001.

(D) Comparison of nuclear versus cytoplasmic

mRNA noise by smFISH analysis before and after

leptomycin B treatment. All isoclonal populations

remain in the amplification regime.

(E) Protein (d2GFP) noise of the same isoclones

measured by flow cytometry before and after 5 hr

of leptomycin B treatment. As predicted, no

change in noise is observed. Inset: cytoplasmic

mRNA noise from (C) for comparison. All data

points represent the means of two biological

replicates, and error bars represent SEM.

See also Figure S4.
As Predicted, Cytoplasmic mRNA and Protein Noise Are
Largely Insensitive to Changes in Nuclear Export
To test model predictions of the effects of nuclear export on

cytoplasmic noise, we computationally and experimentally per-

turbed nuclear export. Numerical simulations and analytical ar-

guments (Equation 1) predicted that slowed nuclear export

should only impact nuclear noise, without affecting cytoplasmic

noise (Figures 4A and S4A), because most genes fall in a

regime in which nuclear export is much faster than cytoplasmic

mRNA degradation (kexp >> kdeg). An important assumption of

the model is that nuclear export rate is not operating in the

saturated regime, which could lead to a nuclear pileup of

mRNA, manifesting as reduced net export, and alter these pre-

dictions (Xiong et al., 2009). To verify that nuclear export is not

saturated, TC intensity and frequency were measured by

smFISH and then used together with nuclear mRNA means to

quantify the export rate (see STAR Methods: Rate Calculations)

after transcriptional activation with tumor necrosis factor (TNF)

(Duh et al., 1989) for 24 hr. We did not observe altered nuclear

export kinetics compared to the untreated control, indicating

that export is operating far from saturation (Figure S4F). Overall,

simulations predict that export rates can be the cause of

altered nuclear-to-cytoplasmic noise ratio (Figure 4A); however,
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the export rate does not impact cyto-

plasmic mRNA noise and, consequently,

is predicted to have no impact on pro-

tein noise.

To experimentally perturb nuclear

export rates, we took advantage of the

fact that HIV and lentiviral reporter

constructs (e.g., the LTR-GFP construct,

Figure 2A) can utilize the cellular chromo-

some region maintenance 1 (CRM1)
pathway for nuclear export (Felber et al., 1989; Malim et al.,

1988; Ossareh-Nazari et al., 1997) even in the absence of Rev

(Urcuqui-Inchima et al., 2011). Cells were treated with leptomy-

cin B, a small-molecule inhibitor of CRM1-mediated nuclear

export, (Watanabe et al., 1999) and imaged by smRNA FISH.

Both dose and duration of leptomycin B were titrated to deter-

mine the maximum tolerable concentration (Figures S4C and

S4D) (i.e., 0.6 ng/mL for 2.5 hr gave minimal cytotoxicity while

still giving significantly increased mean nuclear mRNA). As

above, extrinsic-noise filtering (i.e., cell size and DNA content)

was employed, which further controls for cytotoxic effects,

because dying and dead cells tend to be smaller. To validate

that the nuclear export rate was specifically decreased without

affecting other rates (Figures S4E and S4F), we measured TC

intensity and frequency by smFISH and then used mRNA distri-

butions to calculate rates for each individual biochemical step in

mRNA biogenesis as previously done (Bahar Halpern et al.,

2015a; Munsky et al., 2012).

As predicted, the data show that both themean and noise of nu-

clear mRNA increased significantly (paired t test: p = 0.012 and p =

0.007)whennuclear export isdiminishedapproximately2-fold (Fig-

ure 4B). In contrast, neither mean nor noise of cytoplasmic mRNA

change significantly when nuclear export is diminished (paired
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Figure 5. Cytoplasmic mRNA Noise Is

Further Amplified by Multi-State mRNA

Decay

(A) Representative smFISH probability distributions

of nuclear and cytoplasmic HIV LTR-expressed

mRNA in an isoclonal population of human T lym-

phocytes. Both the single-state Poissonian degra-

dation model (dashed green line) and multi-state

degradation model (solid purple line) fit the exper-

imental probability distribution (bar graph) of nu-

clear mRNA levels (left column), but the mRNA

distribution in the cytoplasm (middle column) is

significantly wider than predicted from Poissonian

degradation (dashed green line) and fits a multi-

state super-Poissonian degradation model (solid

purple line). Schematics of each degradation

model are shown on the right. p values are from the

KS test to the experimental data.

(B) Both the super-Poissonian and Poissonian

degradation models accurately predict nuclear

(circles) and cytoplasmic (squares) mean mRNA

levels—paired t test p = 0.1623 and 0.3737,

respectively.

(C) The Poissonian degradation model (dashed

line) does not accurately predict the cytoplasmic

mRNA noise—paired t test p = 0.0002. Only the

super-Poissonian degradation model (solid line)

accurately predicts both nuclear (circles—inset) and cytoplasmic (squares) mRNA noise—paired t test p = 0.1411 and 0.1623, respectively. Inset: both models

accurately predict nuclear mRNA noise.

(B and C) All data points are the mean of two biological replicates, and error bars represent SEM. Lines are linear regressions.

See also Figures S5 and S6.
t test: p = 0.374 and p = 0.06, respectively) (Figures 4C and 4D).

Protein noise did not change significantly (paired t test: p = 0.162)

(Figure 4E) despite the use of a short-lived GFP reporter that is

particularly sensitive to changes in transcriptional noise (Dar

et al., 2012). This result is expectedgiven the lackof change in cyto-

plasmicmRNAnoise. To test that these resultswere not causedby

anoff-target effect of leptomycinB (i.e., observedeffectswerespe-

cific to inhibition of CRM1 export pathway), we treated the SV40

and UBC promoters with leptomycin B. Transcripts expressed

from either promoter lack an RRE (Figure 2A) and are presumably

not exported via the CRM1-dependent pathway. Therefore,

mRNA expressed from either SV40 or UBC should be insensitive

to leptomycin B treatment. As expected, we found no significant

difference in nuclearmRNAdistributions (KS test p > 0.1 compared

to p < 0.0001 for LTR isoclone A3, Figure S4G).

In extreme cases when export rates fall below the mRNA-

degradation rates—as occurs for a small fraction of genes

(Bahar Halpern et al., 2015a)—the situation is slightly different.

In this regime, cytoplasmic noise can be affected by decreases

in export rate (Figure S4A). However, even for a conservatively

low protein half-life of 2 hr, simulations show that this decrease

in cytoplasmic mRNA noise cannot propagate to protein noise

(Figure S4B). Consequently, for most physiologically relevant pa-

rameters, nuclear export is predicted to cause noise amplifica-

tion rather than attenuation.

Cytoplasmic mRNA Noise Is Further Amplified by Super-
Poissonian mRNA Decay and Translation Processes
Caused by mRNA Switching between Alternate States
Based on previous reports (Battich et al., 2015), we next

explored whether there might be noise-attenuation processes
concealed within the data. Briefly, we used a common model-

validation approach (Munsky et al., 2012) to determine whether

cytoplasmic mRNA distributions could be predicted from

measured nuclear mRNA distributions using the existing model

parameter estimates (Figure S4E). If nuclear mRNA distributions

predicted broader cytoplasmic mRNA noise distributions than

experimentally measured, it could indicate hidden noise-attenu-

ation processes. The goal of this analysis is distinct from the

analysis above (Figure 2), which shows that cytoplasmic noise

is higher than predicted from the cytoplasmic mean level.

Instead, the goal of this analysis was to test if measured cyto-

plasmic noise levels are different than predicted from nuclear pa-

rameters (i.e., transcriptional burst frequency, transcriptional

burst size, mean, and noise).

The data show precisely the opposite of attenuation: the

experimentally measured cytoplasmic RNA distributions are

significantly broader than predicted from nuclear distributions

(KS test: p = 0.0002 [Figure 5A, right, gray bar chart versus green

dashed line]). To fit both nuclear and cytoplasmic mRNA distri-

butions, we then analyzed a series of models of increasing

complexity in order to arrive at a best-fit model of lowest

complexity (Figure S5). We examined eight models consisting

of (models i–ii) single to multiple mRNA states followed by first

order mRNA degradation; (models iii–iv) single to multiple

mRNA states with zero-order mRNA degradation; (models

v–vii) multiple mRNA states with the rate of mRNA entering the

degradation-competent state exhibiting zero-order kinetics, fol-

lowed by first order mRNA degradation; and (model viii) one

mRNA state with ribosomes switching from a translationally

active to inactive state, followed by first order mRNA degrada-

tion only occurring in the translationally inactive state. While
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nuclear mRNA distributions could be fit by all models examined,

the amplified mRNA noise in the cytoplasm could only be fit

when mRNA degradation was modeled in a biphasic manner

(model vii or viii) rather than as a simple Poisson process (i.e.,

exponential waiting times).

Notably, wewere unable to determinewhich of the twomodels

(either vii or viii) is responsible for the observed cytoplasmic

mRNA noise amplification. However, both resulting best-fit

models (model vii and viii; KS test: p > 0.42 [Figure 5A, right,

gray bar chart versus purple full line]) incorporate two previously

documented phenomena: (1) biphasic mRNA degradation in

mammalian cells (Yamashita et al., 2005); and (2) the well-docu-

mented inverse relationship between translation rates and rates

of mRNA degradation (LaGrandeur and Parker, 1999; Parker,

2012; Presnyak et al., 2015), which posits that translational ma-

chinery protects mRNA from degradation or, vice versa, that the

presence of mRNA degradation machinery inhibits translation.

To further validate these multi-state degradation (super-Pois-

sonian) models, we analyzed the panel of clones from above

(Figure 2). We first double-checked that the measured TC fre-

quency and size could accurately predict mRNA distributions

in the nucleus and, consistent with the computational predic-

tions, the measured TC size and frequency indeed accurately

predicted nuclear mRNA distributions using either a Poisson or

the non-Poisson models for all clones (Figures 5A, left, and 5B

and 5C circles). However, consistent with the results above (Fig-

ure S5), for all clones examined, cytoplasmicmRNAdistributions

had substantially higher noise than predicted by Poisson

degradation, and these super-Poissonian distributions could

be fit by the multi-state mRNA degradation models (Figure 5A,

right, and Figure 5C squares). Overall, these data confirm a

further amplification of cytoplasmic mRNA noise relative to the

nucleus, consistent with multi-state (super-Poissonian) mRNA

degradation.

To experimentally test the multi-state translation-degradation

models, we next analyzed the effects of two small-molecule in-

hibitors (cyclohexamide [CHX] and lactimidomycin [LTM]) that

block mRNA translation through alternate mechanisms of action

(Figures S6A–S6C) and that numerical simulations predicted

would have inverse effects on mRNA half-life in the translation-

degradation model (Figure S6D, dashed lines). Specifically,

CHX inhibits the elongation of ribosomes, causing ribosomes

to accumulate on the mRNA (Lee et al., 2012), whereas LTM in-

hibits the final step of translational initiation (Lee et al., 2012). If

mRNAs undergo multi-state degradation-translation with ribo-

somes protecting mRNAs from degradation, the model predicts

that CHX would prevent transcripts from entering the degrada-

tion-competent state, resulting in a lower kon_deg (or lower koff_rib)

and longer mRNA half-life (predictions shown in Figure S6D, left–

dashed blue line). In contrast, in the presence of LTM, the mRNA

is free of ribosomes—except for the initiating ribosome that is

frozen in place—and more susceptible to exosomal decay (Gar-

neau et al., 2007). Consequently, the model predicts that LTM

should push transcripts into the degradation-competent state,

resulting in a higher kon_deg (or lower kon_rib) and a decrease in

mean cytoplasmic mRNA per cell (Figure S6D, right–dashed

red line). Despite both CHX and LTM inhibiting protein translation

to the same extent (Figure S6A), CHX causes an accumulation of

cytoplasmic mRNA over time, while LTM treatment shows a
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decrease in cytoplasmic mRNA (Figure S6D), as predicted. We

did observe LTM inducing an initial 1-hr transient increase in

cytoplasmic mRNA preceding the decrease, and as previously

reported, this transient increase could be due to the cell globally

decreasing degradation rates as a response to stress (Horva-

thova et al., 2017). These changes in cytoplasmic mRNA levels

are not due to changes in transcription rate since the nuclear

mean (Figure S6D, black data points) and respective distribu-

tions (Figure S6B) show no significant differences. Overall, a

multi-state mRNA translation-degradation model appears to be

the most parsimonious with the cytoplasmic RNA data.

Multi-State mRNA Translation-Degradation Amplifies
ProteinNoise, Accounting for up to 74%of Intrinsic Cell-
to-Cell Variability in Protein Levels
To examine how mRNA noise propagates to protein levels, we

combined quantitative protein imaging with cytoplasmic smRNA

FISH. GFP levels were quantified in individual isoclonal LTR-GFP

reporter cells by confocal microscopy (Figures 6A and 6B, gray

circles and bars), and molecular concentrations were calculated

by calibration against purified soluble GFP standards (Fig-

ure S7A). Using the measured mean GFP level and half-life

(Dar et al., 2012) in combination with previously established pa-

rameters (Figures S4E), simulations were used to identify which

of the previously developed models could best fit the protein

data (Figure S5). As above, the protein distributions can only

be fit using the seventh or eighth model where both degradation

and translation aremulti-state (i.e., super-Poissonian) processes

(KS test p > 0.45). Notably, these multi-state processes are

fundamentally different from previously reported translational

‘‘bursting’’ (Thattai and van Oudenaarden, 2001) (Figure S7C,

green line), as they generate a significantly higher degree of

noise amplification in a translation-competent mRNA species

and hence in protein (Figure S7C, purple line). These multi-state

degradation and translation models—where translation and

degradation are mutually exclusive—are necessary and suffi-

cient to explain the amplified mRNA noise in the cytoplasm, as

well as the measured protein noise for the various promoters

and integration sites examined (Figures 6A, 6B, and S7B).

Next, to determine the contribution of multi-state translation-

degradation to overall cellular noise, and specifically intrinsic

noise, we analyzed flow cytometry data and microscopy mea-

surements against predictions from numerical simulations. First,

using an established size-gating approach (Blake et al., 2003;

Newman et al., 2006; Singh et al., 2010) that isolates cells with

similar sizes (correlates to cells synchronized by cell-cycle state),

we separated intrinsic and extrinsic noise (Figures S7D and

S3C–S3G). While this size-gating approach may slightly under-

estimate extrinsic factors (Newman et al., 2006), it excludes

the majority of extrinsic cellular variability especially for low ex-

pressing genes, which is an expression regime where other

methods (e.g., two-color analysis) are technically difficult to

employ. Consistent with previous large-scale analysis of low

abundance genes in eukaryotes (Bar-Even et al., 2006; Dar

et al., 2012; Newman et al., 2006), we find that intrinsic factors

appear to account for a large portion of total protein noise in

flow cytometry data—the intrinsic contribution ranged from

59% to 76% for the LTR promoter (Figures S7F and S7H),

41% to 61% for more highly expressing promoters (EF-1a,



Figure 6. Protein Noise Is Linked to Cyto-

plasmic mRNA Noise, Indicating an Overall

Model for Amplification of Transcriptional

Noise

(A) Measured versus predicted noise (s2/m) of

d2GFP levels expressed from the HIV LTR promoter

in an isoclonal population of human T lymphocytes

and from the UBC and EF-1a promoters in isoclonal

populations of human myeloid leukemia cells

determined by microscopy. The single-state Pois-

sonian translation-degradation model (dashed line)

poorly predicts the measured d2GFP expression

noise (gray circles), while the super-Poissonian

translation-degradation model (solid line) can

accurately predict protein noise. Data points are the

mean of two biological replicates, and error bars

represent SEM.

(B) The representative probability distribution of

experimental data (bar graph) is significantly wider

than the distribution predicted from Poissonian

degradation and translation (dashed line) but is fit by

a multi-state degradation and translation model

(solid line). p values are from KS test to the experi-

mental data.

(C) Contributions from extrinsic noise (gray),

multi-state translation-degradation (purple), and all

other intrinsic noise (green) to total nuclear mRNA,

cytoplasmic mRNA, or protein noise.

(D) Schematic of a cumulative model showing steps

that amplify (red) or attenuate (blue) expression

noise.

See also Figure S7.
SV40, and UBC, Figures S7E and S7H), and �37% for constitu-

tively expressed Nanog (Figures S7G and S7H). Then, to

determine how translation-degradation bursting quantitatively

contributes to this intrinsic noise, we calculated the expected

protein noise for all clones (LTR, EF-1a, and UBC) under two

alternate scenarios: (1) a scenario where noise is generated

only from previously characterized sources (i.e., transcriptional

bursting, nuclear export, and Poissonian mRNA degradation

and translation); or (2) the scenario where multi-state translation

and degradation is included as a potential noise source. This

analysis indicates that for the LTR, UBC, and EF-1a promoters

in both human T lymphocytes and immortalized myelogenous

leukemia cells, multi-state translation-degradation bursting ac-

counts for �74% of intrinsic cell-to-cell variability (Figure 6C),

making it the dominant source of intrinsic cellular variability

(other processes account for �26% of intrinsic noise).

DISCUSSION

How cellular processes amplify or attenuate gene-expression

fluctuations (noise) is crucial to designing synthetic gene-regula-

tory circuits (Hasty et al., 2002) and for efforts to efficiently

specify cell fate (Blake et al., 2006; Dar et al., 2014). Here, we

analyzed how transcriptional fluctuations are modulated by

cellular processes asmRNAs proceed through translation. Since
Cell S
we are concerned with quantifying tran-

scriptional fluctuations (i.e., bursts) and

how they influence protein noise, we
examined the normalized variance (a.k.a. Fano factor), the

typical measure of transcriptional bursting (Blake et al., 2003;

Munsky et al., 2012; Ozbudak et al., 2002; Sanchez and Golding,

2013; Thattai and van Oudenaarden, 2001).

Computational results (Figure 1) show that in the majority of

physiologically relevant scenarios (approximately 85%), nuclear

export of mRNA amplifies mRNA fluctuations generated by tran-

scriptional bursts, and single-molecule RNA counting corrobo-

rates this prediction for several viral and mammalian promoters

(LTR, UBC, EF-1a, SV40, JUN, FOS, COX-2, FOXO1, PER1,

NR4A2, and Nanog) in different mammalian cell types (Figures

2 and 3). The results also show that cytoplasmic mRNA noise

is robust to changes in nuclear export (Figure 4) but can be sub-

stantially amplified by super-Poissonian mRNA decay (Figure 5)

and translation processes (Figure 6). Cumulatively, the resulting

models can predict protein noise from transcriptional measures

and show that the effects of nuclear export, mRNA degradation,

and translation amplify gene-expression noise, resulting in cyto-

plasmic mRNA and protein distributions that are super-Poisso-

nian (i.e., far from minimal Poisson noise). These results, which

show that transcriptional noise propagates to the protein level,

are consistent with the finding that noise can drive diversifying

(positive) selection for bet-hedging phenotypes (Balázsi et al.,

2011; Beaumont et al., 2009; Raj and van Oudenaarden, 2008;

Rouzine et al., 2015).
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Relationship to Previous Findings
These results build on previous findings that translation can pro-

portionally amplify transcriptional fluctuations (Thattai and van

Oudenaarden, 2001) since a single RNA typically produces hun-

dreds to thousands of protein molecules (Bar-Even et al., 2006;

Blake et al., 2003)—i.e., fluctuations of a single mRNA molecule

can generate large fluctuations in protein numbers. However, the

multi-state translation-degradation models presented here are

fundamentally different from previously reported translational

‘‘bursting’’ (Thattai and van Oudenaarden, 2001), which is not

sufficient to fit measured noise levels. We also note that the find-

ings herein are consistent with two computational studies

showing that passive noise attenuation can only occur when nu-

clear mRNA export is very slow or in a saturation regime (Singh

and Bokes, 2012; Xiong et al., 2009).

This study does not dispute that passive noise attenuation is

possible, as it can occur when kexp < kdeg. Therefore, our data

are also in agreement with a recent study showing that in

�15% of cases, nuclear export is slower than cytoplasmic

mRNA degradation and that passive attenuation of mRNA noise

can occur in this regime (Bahar Halpern et al., 2015a), whereas

cytoplasmic mRNA noise is larger in magnitude than nuclear

mRNA noise (i.e., amplification) when kexp > kdeg. An accompa-

nying study reported that noise attenuation was more wide-

spread (Battich et al., 2015) when quantifying noise for specific

genes by CV2 (which scales with the mean). However, even

when noise is quantified in terms of Fano factor (which is inde-

pendent of mean scaling), our data (Figure 3) show different

noise properties for a number of the same genes (i.e., COX-2,

FOS, PER1, and FOXO1). The HeLa cells and primary human

keratinocytes examined in that study could exhibit significantly

slower nuclear export and faster mRNA degradation than the

lymphocytes, embryonic murine cells, and kidney cells exam-

ined here. However, a potentially more important difference is

that Battich et al. analyze nuclear versus cytoplasmic noise for

these genes in the pre-steady-state regime after perturbation

(serum starvation) while gene expression was still in the process

of re-establishing steady state (Battich et al., 2015). Conse-

quently, during pre-steady-state (i.e., after transcription is initi-

ated and beforemRNA is exported to the cytoplasm), the nuclear

mean mRNA and noise are likely to be higher than cytoplasmic

mean and noise. How noise propagates during non-steady-state

kinetics is in itself an interesting question, however, such pre-

steady-state analysis may not accurately predict the impact of

nuclear export on noise in the steady-state regime. Our data,

on the other hand, are collected from cells expressing genes at

a steady-state level.

Nevertheless, the results herein demonstrate that any poten-

tial attenuation of mRNA noise is unlikely to cause decreased

protein noise due to longer protein versus mRNA half-lives (in

line with previous predictions [Singh and Bokes, 2012]) and

possibly due to multi-state degradation and translation (Figures

5 and 6). A recent study also found higher-than-predicted cyto-

plasmic noise for transcripts expressed from 12 yeast genes,

which was attributed to mRNA processing downstream of tran-

scription (Choubey et al., 2015). Overall, amplification appears to

be the most common form of noise modulation in the absence of

specific gene-regulatory circuits. Intuitively, the widespread na-

ture of noise amplification makes sense because of the ineffi-
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cient and costly nature of noise attenuation. However, it is

feasible that for certain genes where robust expression is impor-

tant, the benefit of low noise outweighs the cost of noise

attenuation.

Appropriateness of the Fano Factor for Comparing
Nuclear versus Cytoplasmic Noise
Both the CV2 and Fano factor are typically used to quantify noise

in biological systems and some may ask why an increase in the

mean—which naturally results in a reduction of CV2 (e.g., for a

Poisson process)—is not a ‘‘legitimate’’ reduction of noise. We

note that a reduction in CV2 from increasing the mean may

indeed be ‘‘noise attenuation,’’ but if the magnitude of the CV2

reduction differs from what would be obtained simply by

increasing the mean (Poisson scaling), the discrepancy needs

to be explained as we have done in this study (e.g., what mech-

anisms account for the discrepancy and why isn’t the noise

change scaling with the mean as a Poisson?). Such discrep-

ancies from Poisson scaling are in fact an established method

used to characterize transcriptional bursting (Ozbudak et al.,

2002) and also feedback regulation and malfunctions in circuits

(Simpson et al., 2003). Thus, the use of CV2 is appropriate, but

if Poisson scaling is not taken into account, underlying regulatory

mechanisms will be missed; examining the Fano factor helps

avoid this mistake. In essence, this is the reason that the conven-

tional experiment is to alter noise independent of the mean (Dar

et al., 2014; Maamar et al., 2007).

Another potential argument could be that in contrast to

comparing nuclear versus cytoplasmic noise levels, the appro-

priate comparison is to compare noise with versus without

nuclear export (i.e., in the regime of an infinite export rate). How-

ever, we are aware of no technique to eliminate the nucleus or

generate an infinite export rate, whereas nuclear versus

cytoplasmic noise can be empirically measured. This empirical

definition also enables testing by perturbation experiments (Fig-

ure 4), and as Figure 4 shows, when the nuclear export rate is

pharmacologically decreased in cells, the results are in agree-

ment with the model predictions.

Potential Mechanisms of Noise Amplification
The data herein support a model for cytoplasmic mRNA degra-

dation occurring in a biphasic manner (Yamashita et al., 2005),

with translational initiation and mRNA degradation being

inversely proportional and mutually exclusive processes

(LaGrandeur and Parker, 1999; Parker, 2012; Pelechano et al.,

2015; Schwartz and Parker, 1999). However, our data cannot

distinguish between two competing models of biphasic degra-

dation (Figures S5vii and S5viii). These models do not contradict

recent data obtained from yeast demonstrating that some

mRNAs undergo co-translational mRNA degradation (Pelechano

et al., 2015). Since both models require that translational initia-

tion and degradation bemutually exclusive, elongation could still

occur during 50 to 30 degradation. Hence, cytoplasmic mRNA is

subject to another multi-state process, which adds a significant

noise-amplification step to gene expression. Several mecha-

nisms could explain the multi-state degradation and translation

including the association of non-translating mRNAs into

P bodies or stress granules, as P bodies and stress granules

are enriched with mRNA degradation and translational initiation



machinery, respectively (Decker and Parker, 2012). However,

our smFISH data do not show evidence of mRNA aggregates

in the cytoplasm. Therefore, the data appear more parsimonious

with two other mechanistic models: (1) spatial heterogeneity in

mRNA degradation and translation machinery due to transla-

tional ‘‘hot-spots’’ (Katz et al., 2016) or heterogeneity in the

amount of actively translating mRNA per cell (Pichon et al.,

2016; Yan et al., 2016); or (2) multi-state pseudo-zero order (or

Michaelis-Menten-like) mRNA decay along with mutually exclu-

sive degradation and translation.

Model Limitations and Caveats
While the computational model we employed was admittedly

simplified—it considered only two transcriptional states without

important processes such as splicing—the smFISH measure-

ments show that amplification of noise occurs primarily via

post-transcriptional processes in the cytoplasm (e.g., export,

degradation, and translation; see Figure 6D). If splicing were

included as a rate-limiting step (Hao and Baltimore, 2013), it

would add an extra noise source and most likely further amplify

noise. Moreover, the results do not depend on the strict two-

state random-telegraph transcription model because noise

amplification is primarily post-transcriptional—i.e., the noise

amplification result would hold for other transcription models

with greater than two transcriptional states (Corrigan et al.,

2016; Neuert et al., 2013; Zoller et al., 2015). Finally, though a

discrete diffusion model does not alter our results, if nuclear

pores were saturated (i.e., nuclear export was pseudo-zero or-

der), then attenuation may become more prevalent (Singh and

Bokes, 2012; Xiong et al., 2009). Yet, our data show no evidence

of nuclear export operating close to saturation.

It is not clear how widespread biphasic mRNA decay is across

themammalian genome or even across different mammalian cell

types, and mRNAs that exhibit Poisson-like mRNA decay (Hor-

vathova et al., 2017) would not be subject to this additional noise

amplification step. From an evolutionary perspective, it is

conceivable that the �15% of mRNA species that are subject

to passive attenuation of mRNA noise (Bahar Halpern et al.,

2015a) could also exhibit Poisson-like mRNA decay, allowing

for a low-noise gene expression pathway. It is also possible

that untranslated mRNAs, such as microRNAs (miRNAs) or short

hairpin RNAs (shRNAs), are not subject to multi-state degrada-

tion and accompanying noise amplification due to the lack of

protecting ribosomes; however, Dicer and other processing ma-

chinery could serve an equivalent protection role. Since miRNAs

modulate protein levels via mRNA degradation and translational

repression (Bartel, 2004), miRNAs could influence multi-state

degradation and translation rates to modulate noise (Garg and

Sharp, 2016; Schmiedel et al., 2015).

In summary, the results show that in the majority of scenarios,

transcriptional noise is amplified by nuclear export and then

further amplified by mRNAs switching between translation-

and degradation-competent states. The results indicate that

intrinsic cellular processes amplify noise originating from tran-

scriptional bursts and ultimately account for �74% of the

intrinsic noise. These amplification processes provide a founda-

tional basis for how noise may have acted as a driving force in

cell-fate decisions and explains why transcriptional regulatory

circuits are required to modulate noise.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines
Mouse E14 embryonic stem cells (male) were cultured in feeder-free conditions on gelatin-coated, 10cm Corning plates (Sokolik

et al., 2015). ESGRO 2i + LIF media (SF016-200) was used for cell culture. Jurkat T Lymphocytes (male) were cultured in RPMI-

1640 medium (supplemented with L-glutamine, 10% fetal bovine serum, and 1% penicillin-streptomycin), at 37�C, 5% CO2, in

humidified conditions at b 0.05 3 105 to 1 3 106 cells/mL. Human immortalized myelogenous leukemia (K652, female) cells were

cultured in RPMI-1640 medium (supplemented with L-glutamine, 10% fetal bovine serum, and 1% penicillin-streptomycin), at

37�C, 5% CO2, in humidified conditions at 2 3 105 to 2 3 106 cells/mL. Human embryonic kidney (HEK293, female) cells were

cultured in DMEM (supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin) at 37�C, 5%CO2, in humidified con-

ditions at 10 to 90% confluency. All cell lines were passaged at least three times prior to smRNA FISH imaging.

Approximating mRNA Diffusion out of the Nucleus Using a Lumped Export Rate Parameter
Diffusion of the mRNA out of the nucleus may be modeled using the diffusion equation with an absorbing boundary that represents

the transition from the nucleus to the cytoplasm.

An approximation to diffusion that is amenable to Gillespie simulation is a multistep random walk (Figure S2A, left) with an

absorbing state that models the transition from the nucleus to the cytoplasm. The mRNA molecules synthesized in the nucleus

begin in state N0 and then follow random walk rules until captured in the absorbed (C) state. Left and right transitions have equal
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probabilities (p(left) = p(right) = 0.5) for each step in the walk. (Note that p(N0 / N1) = 1). The final step in the walk (N3 / C) is

irreversible and could be modeled with a different probability than the reversible steps. However, for convenience p(N3 / C) is

also set to be 0.5.

The distribution of mRNA lifetime in the nucleus is easily found by setting the initial condition (t=0) of the system as

N0 = 1
N1;2;3 = 0
C= 0

;

and using a recursive application of the random walk rules (Figure S2B) to map out the probability of the molecule being found in a

particular state. The probability of the mRNA molecule remaining in the nucleus at step number s (P(s)) is

PðsÞ=
X3

i = 0
Ni:

The distribution of mRNA lifetime in the nucleus is the plot of P(s) vs s (Figure S2C). The randomwalk produces two distinct phases

of the mRNA lifetime in the nucleus. First, there is the delay phase, which represents the minimum time needed for the mRNA mole-

cule to travel from the point of synthesis to the nuclear boundary. Next is a nearly exponential decay that represents the stochastic

export of mRNA molecules at the boundary into the cytoplasm.

A simpler model would consider only the transition from the nuclear boundary into the cytoplasm using one irreversible step (Fig-

ure S2A, right). This model has the virtue of allowing easy noise filtering analysis using the frequency domain formalism described in

the main text, and is computationally faster for the Gillespie simulation. Although this simplified model reproduces the exponential

decay feature of the random walk, it cannot generate the initial delay phase. However, as seen above, the delay phase of the

mRNA nuclear retention time is short compared to the exponential decay phase and very little loss of accuracy is introduced by

the simplified model (Figure S2D).

Computational Modeling
Stochastic Simulations

A simplified two-state transcription model incorporating two compartments (nucleus and cytoplasm) was constructed and simulated

using the Gillespie algorithm (Gillespie, 1977), with reaction scheme and parameters as defined in Table S1. Stochastic simulations

were run inMATLAB. Initial conditions for all specieswere set to 0, except for PromoterOFF whichwas set to 1. Simulationswere run to

time = 25 (arbitrary time units) and 1000 simulations were run for each parameter set. For the final ‘‘time-point’’ of simulations, nuclear

and cytoplasmic mean and Fano factor were calculated. The discrete diffusion model was constructed as described above, with two

additional nuclear mRNA species (3 total). The transition between all three nuclear mRNA species is reversible with both forward and

backwards rate constants set to 1.6 and the irreversible export rate constant set to 25.

Ordinary Differential Equations for Probable Parameter Regime Calculations

Assuming a simplified mathematical model where mRNAs are transcribed at rate a, nuclear and cytoplasmic mRNA means can be

approximated by the following equations:

dmRNAnuc

dt
=a� kexp,mRNAnuc (Equation 2)
dmRNAcyt

dt
= kexp,mRNAnuc � kdeg,mRNAcyt: (Equation 3)

At steady state the mean amount of nuclear and cytoplasmic mRNA is therefore:

mRNAnuc =
a

kexp
(Equation 4)
mRNAcyt =
a

kdeg
; (Equation 5)

and the ratio of nuclear to cytoplasmic mRNA is:

mRNAnuc

mRNAcyt

=
kdeg
kexp

: (Equation 6)

Frompreviously reported genome-widemRNAcounts of nuclear versus cytoplasmicmRNA, the ratio between the degradation and

export rate (kdeg/kexp) per gene can be estimated (Figure S1C) (Bahar Halpern et al., 2015a), and the possible parameter space can be

further limited to a probable regime. From the probable parameter regime, we could determine how many scenarios resulted in true

attenuation of mRNA noise (i.e. cytoplasmic noise was attenuated down to minimal Poissonian levels) To remain on the conservative

side, a given parameter combination was labeled true attenuation, when cytoplasmic noise was lower than nuclear noise, and cyto-

plasmic Fano factor was < 2. Next, the percentage of scenarios resulting in true attenuation was calculated, resulting in only�2.5%.
Cell Systems 7, 384–397.e1–e6, October 24, 2018 e2



Analytical Arguments for Protein Noise Dependence on Fano Factor versus CV2

The variance (s2p) in the protein population may be calculated as follows:

s2
p =

�hPi
hCi

�2

s2
C

NBWp

NBWc

;

where s2C = variance in the cytomRNA hPi = steady-state protein population hCi = steady-state cyto mRNA populationNBWp = noise

bandwidth of the protein NBWc = noise bandwidth of the cyto mRNA.

From this we can calculate the CV2 of the protein (CV2
p ) as follows:

s2
p

hPi2 =CV2
p =

�
1

hCi
�2

s2
c

NBWp

NBWc

=FFc

NBWp

hCiNBWc

;

where FFc = the Fano factor of cyto mRNA. The noise bandwidth of the protein is usually set by the protein decay/dilution rate (gp) as

(Simpson et al., 2003)

NBWp =
gp

4
;

and

hCi= a

gr

;

where a=a

�
kon

kon + koff

�
is the average transcription rate and gr is the decay rate of the cyto mRNA. This leaves

CV2
p =

gpgr

4a
FFc

1

NBWc

;

where only the noise bandwidth of the mRNA cyto remains undefined as it will depend on both gr and the mRNA export rate (kexp).

However, the upper limit on NBWc is

NBWc%
gr

4
:

If mRNA export is slower than cytoplasmicmRNA degradation, then the low export rate can decreaseNBWc below the value set by

mRNA decay, but it cannot increase NBWc. As a result, we obtain

CV2
pRFFc

gp

a
:

This equation indicates that the Fano factor of the cytoplasmic mRNA sets the minimum obtainable protein CV2 regardless of the

mRNA export rate.

The above equation can also be written in terms of cytoplasmic mRNA CV2:

CV2
pRCV2

c

gp

gr

:

However, the critical point is that this CV2 version of the equation does not reflect the noise caused by promoter architecture rep-

resented by a. In other words, using this equation to determine the minimum obtainable protein CV2, means that the protein CV2 will

be obscured by both protein and mRNA half-life. In order to use the CV2 of the cytoplasmic mRNA to accurately determine the min-

imum obtainable protein CV2, while still maintaining the underlying promoter architecture ðaÞ, the following equation must be used:

CV2
pRCV2

c

gp

a
hCi;

where there is an unavoidable scaling of the mean hCi.

Analytical Derivation of the Relationship between the Nuclear and Cytoplasmic Fano Factor
The power spectral density (PSD) of the noise in theNucmRNApopulations (SNUC(f) is (see Simpson et al., 2003; Simpson et al., 2004;

Cox, 2006)

SNUCðfÞ= SNUCð0Þ�
1+

� f

ftoggle

�2
��

1+
� f

fexport

�2
� ; (Equation 7)

where f = frequency in HzSNUC(0)= PSD of NUCmRNApopulation noise at f=0 ftoggle =
kON + kOFF

2p
= critical frequency associated with

promoter toggling fexport =
kexp
2p

= critical frequency associated with export of mRNA.

The variance of the noise in the Nuc mRNA populations (s2NUC) is (Simpson et al., 2003)
e3 Cell Systems 7, 384–397.e1–e6, October 24, 2018



s2
NUC =SNUCð0ÞNBWNUC;

where NBWNUC is known as the noise bandwidth and is a function of the two critical frequencies described above (Simpson

et al., 2003).

The Fano factor of the noise in the nuclear mRNA population (FFNUC) is

FFNUC =
s2
NUC

hNi =
SNUCð0ÞNBWNUC

hNi ;

where hNi is the steady-state value of the Nuc mRNA population.

The PSD of the noise in the Cyto mRNA population (SCYTO(f) is

SCYTOðfÞ=G2 SNUCð0Þ�
1+

� f

ftoggle

�2
��

1+
� f

fexport

�2
��

1+
� f

fdeg

�2
� ;

where G= hCi
hNi=

kdeg
kexp

is the ‘‘gain’’ between Cyto and Nuc mRNA populations.<C> is the Cyto mRNA population.kdeg is the rate of

mRNA degradation in the cyto fdeg =
kdeg
2p

is the critical frequency associated with mRNA degradation in the cytoplasm.

The variance (s2CYTO) and Fano factors (FFCYTO) for the cytoplasmic mRNA population are:

s2
CYTO =G2SNUCð0ÞNBWCYTO

FFCYTO =
s2
CYTO

hCi =
G2SNUCð0ÞNBWCYTO

GhNi =G
SNUCð0ÞNBWCYTO

hNi =
hCi
hNi

SNUCð0ÞNBWCYTO

hNi :

The ratio of the Fano factors is:

FFCYTO

FFNUC

=
hCi
hNi

SNUCð0ÞNBWCYTO

hNi
SNUCð0ÞNBWNUC

hNi
=
hCi
hNi

NBWCYTO

NBWNUC

: (Equation 8)

The two noise bandwidths are controlled by the three critical frequencies associated with (i) Promoter toggling; (ii) mRNA export;

and for the cytoplasm (iii) mRNA degradation. In both cases, the noise bandwidth is dominated by the lowest of the critical fre-

quencies that are associated with it. As a result,

NBWNUCRNBWCYTO;

and therefore,

NBWCYTO

NBWNUC

%1;

and

FFCYTO

FFNUC

%
hCi
hNi :

Equation 8 shows that there is a strong tendency for FFCYTO> FFNUC for cases where <C> > <N>. Only in the special case where the

cytoplasm has a much lower noise bandwidth than the nucleus is it possible to have both <C> > <N> and FFNUC> FFCYTO. These

relationships can clarified by examining the following limiting cases:
Parameter Relationship Noise Bandwidth Relationship Steady-State Population Relationship Fano Factor Relationship

kdeg>>kexp NBWCYTO

NBWNUC
= 1

hCi
hNi<1

FFCYTO

FFNUC
=

hCi
hNi<1

kdeg < kexp >> kON+ kOFF NBWCYTO

NBWNUC
z1

hCi
hNi>1

FFCYTO

FFNUC
z

hCi
hNi>1

kdeg << kexp << kON+ kOFF NBWCYTO

NBWNUC
=

kdeg
kexp

=
hNi
hCi

hCi
hNi>1

FFCYTO

FFNUC
=

hCi
hNi

hNi
hCi = 1

kdeg << kexp z kON+ kOFF NBWCYTO

NBWNUC
= 2

kdeg
kexp

= 2
hNi
hCi

hCi
hNi>1

FFCYTO

FFNUC
= 2

hCi
hNi

hNi
hCi = 2

kdeg z< kexp << kON+ kOFF NBWCYTO

NBWNUC
>z0:5

hCi
hNi>z1

FFCYTO

FFNUC
=

hCi
hNi>z0:5

kexp >> kON+ kOFF z kdeg NBWCYTO

NBWNUC
z0:5

hCi
hNi>1

FFCYTO

FFNUC
= 0:5

hCi
hNi
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Rate Calculations
The number of mRNAs at the transcriptional center (TCmRNA) can be calculated from the transcriptional center intensity (TCint):

TCmRNA =
TCint

Spotint
; (Equation 9)

where Spotint is the median single mRNA intensity. From this the transcription rate (ktx) was calculated (Bahar Halpern et al., 2015b):

ktx =TCmRNA,
kelongation

L
; (Equation 10)

where kelongation (1.9 kb/min) is the elongation rate of RNAPII (Boireau et al., 2007) and L is the length of the gene. The TC frequency is

an approximation for the frequency that the respective promoter is on (fon). Assuming gene expression is at steady-state, then export

(kexp) and degradation (kdeg) rates were calculated from nuclear (meannuc) and cytoplasmic (meancyt) mean mRNA count respectively

(Munsky et al., 2012):

kexp =
fon,ktx
meannuc

(Equation 11)
kdeg =
fon , ktx
meancyt

: (Equation 12)

To verify the accuracy of these rate calculations, we also determined export and degradation rates by fitting nuclear and cyto-

plasmic decay curves. smRNA FISH was performed at 15-minute time intervals after treatment with an orthogonal transcriptional

inhibitor Actinomycin D (Bensaude, 2011), and the experimental data were then fit with an exponential decay curve to determine

the rate constants. For both export and degradation, similar rate constants were obtained (Figure S4F).

Prediction of Cytoplasmic Noise
From the frequency that the respective promoter is on (fon):

fon =
kon

kon + koff
(Equation 13)

and the nuclear noise (Fanonuc):

Fanonuc = 1+
ð1� fonÞ,ktx
kon + koff + kexp

; (Equation 14)

the promoter ON (kon) and promoter OFF (koff) rates were calculated (Munsky et al., 2012), given that all other parameters are known.

These parameters were then used to predict cytoplasmic noise, using both Poissonian and multi-state cytoplasmic mRNA degrada-

tion models. The additional rates involved in multi-state degradation (Table S1) were determined by manual screening of parameter

ranges.

Single Molecule RNA FISH
Sample Preparation

Probes were developed using the designer tool from Stellaris (LGC Biosearch Technologies, Novato, CA) (http://www.

singlemoleculefish.com/) to detect d2GFP, GFP, JUN, FOS, COX-2, FoxO, NR4A2, PER1, and FOS mRNA. Because Nanog had a

GFP tag, its mRNA could be detected using the GFP probes. Probes were designed using a masking level of 5, and at least 2 base

pair spacing between single probes. Each probe set contained 29-48 probes, with each probe being 18-20 nt long and conjugated

with TAMRA (see Table S3).

Approximately 6x105 isoclonal cells were washed with 2mL of PBS solution and then immobilized on a Cell-Tak (Corning, Bedford,

MA) coated 8-well chambered image dish. Human embryonic kidney (293F) cells were trypsinized with 0.05% Trypsin EDTA (Medi-

atech,MT 25-052-C1) for 1min followed by neutralization with DMEMprior to PBSwashing step. If applicable, cells were then treated

with leptomycin B (Sigma Aldrich, Darmstadt, Germany). Prior to fixing, mouse E14 embryonic stem cells (mESCs) were cultured on a

35mm MatTek dish (P35G-1.5-14C, MatTek, Ashland, MA). Cells were then fixed with PBS in 3.4% paraformaldehyde for 10 min.

Fixed cells were washed with PBS and stored in 70% EtOH at 4�C for a minimum of one hour to permeabilize the cell membranes.

Probes were diluted 200-fold and allowed to hybridize at 37�C overnight. Wash steps and DAPI (Thermo Fisher Scientific, Waltham,

MA) staining were performed as described (https://www.biosearchtech.com/support/applications/stellaris-rna-fish).

Imaging

To minimize photo bleaching, cells were imaged in a photo-protective buffer containing 50% glycerol (Thermo Fisher Scientific, Wal-

tham, MA), 75 mg/mL glucose oxidase (Sigma Aldrich, Darmstadt, Germany), 520 mg/mL catalase (Sigma Aldrich, Darmstadt, Ger-

many), and 0.5 mg/mL Trolox (Sigma Aldrich, Darmstadt, Germany). Images were taken on a Nikon Ti-E microscope equipped with a

W1 Spinning Disk unit, an Andor iXon Ultra DU888 1k x 1k EMCCD camera and a Plan Apo VC 100x/1.4 oil objective in the UCSF
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Nikon Imaging Center. Approximately 10 xy locations were randomly selected for each isoclonal population. For each xy location,

Nyquist sampling was performed by taking�30, 0.4 um steps along the z-plane. The exposure times for TAMRA (100% laser power),

and DAPI (50 % laser power) channels were 500 ms, and 50 ms for single mRNA analysis and 50 ms, and for transcriptional center

(TC) analysis. For each z-plane in a 3-D stack images for both single mRNA analysis and TC analysis were taken.

Image Analysis

mESCs were segmented manually and all other cells were segmented using a short in-house Fiji (Schindelin et al., 2012) script (avail-

able upon request), which relied on the auto fluorescence visible in the RFP channel. Spot/TC identification and counting was then

performed using in-houseMATLAB programs (available upon request). In short, the user enters a cellular size and eccentricity range,

DAPI intensity threshold, FISH intensity threshold and TC intensity threshold. The MATLAB program then uses the central z-slice

DAPI image to create a general nuclear mask. Together with the cellular mask established in ImageJ this nuclear mask is used to

exclude cells outside a given size range, nuclear DAPI intensity range or eccentricity range (see extrinsic noise section below). Cells

which contained more than one nuclei were also excluded to eliminate multiple cells which were segmented as one. Notably, these

steps automatically exclude unhealthy cells, since the cells tend to shrink and/or DAPI intensity becomes much brighter. Next, the

DAPI and FISH images of each individual z-slice are sequentially analyzed. After background subtraction, a Gaussian filter was

applied to reduce the amount of local maxima caused by pixel-to-pixel noise. Individual spots and TC’s are then segmented using

the predefined thresholds to determine possible spot/TC areas. For each z-slice the local maxima of the segmented spot areas are

detected. Local maxima which show up within the possible spot areas of multiple sequential images were only counted as one local

maxima. Each DAPI image was used to create a nuclear mask for that specific z-slice, which in turn was used together with the

cellular mask to allocate a specific spot to either the nucleus or the cytoplasm of each individual cell. TC’s were defined as such,

if their local maxima’s were at least double as bright as the median single mRNA local maxima intensity. The number of mRNAs

at the transcriptional center were quantified as the intensity of the transcriptional center divided by themedian single mRNA intensity.

Extrinsic Noise Filtering

Cellular propertiesweremeasuredusing theMATLABprogrammentioned above, but the respective ranges for extrinsic noise-filtering

were determinedmanually. For the extrinsic noise filtering three parameters were quantified: cellular size; DAPI intensity; and cellular

eccentricity (FiguresS3CandS3D). For eachparameter thePearson’s correlationbetween the totalmRNAsper cell and the respective

parameter was quantified. The extrinsic noise filtering steps were applied such that the analyzed range of cells was within the respec-

tive noise filtering boundaries (see Table S2 for an example). For two extrinsic noise filtering boundaries to be accepted, the Pearson’s

correlationmust not be statistically significant (i.e. p>0.05). The final extrinsic noise filtering boundariesweremanually chosen in order

to include as many cells as possible while maintaining a Pearson’s correlation p>0.05 for all three measured parameters.

Multi-Linear Regression (MLR)

10 cellular properties were measured using a MATLAB program modified from the one mentioned above: (1) cellular area of central

z-plane; (2) cellular eccentricity of central z-plane; (3) nuclear area of central z-plane; (4) average DAPI intensity of central z-plane; (5)

maximumDAPI intensity of central z-plane; (6) nuclear eccentricity of central z-plane; (7) average nuclear area across all z-planes; (8)

average DAPI intensity across all z-planes; (9) maximum DAPI across all z-planes; (10) average nuclear eccentricity across all

z-planes. These features were used to perform MLR using the regress function in MATLAB on nuclear and cytoplasmic cellular

mRNA. The prediction strength (i.e. pS = R2) of the MLRmodel was then calculated before and after MLR-filtering. The MLR-filtering

performedwas as follows: For each parameter the Pearson’s correlation between the total mRNAs per cell and the respective param-

eter was quantified. The MLR- filtering steps were applied such that the analyzed range of cells was within their respective bound-

aries. These boundaries weremanually chosen in order to include asmany cells as possible while maintaining a pS <0.1. Once the pS

dropped below 0.1 for both nuclear and cytoplasmic mrNA, the Fano factor was calculated and compared to the Fano factor of the

same samples with the more coarse-grained extrinsic noise-filtering described above.

GFP Expression Analysis

Microscopy. Isoclonal populations were washed with 10 mL PBS solution and then immobilized on Cell-Tak coated 8-well cham-

bered image dish. For the GFP standard curve, soluble eGFP (Cell Biolabs, San Diego, CA) standards (in PBS) of known concentra-

tion were imaged under the same conditions as cellular GFP. Both GFP standards, and cellular GFP were imaged on a Nikon Ti-E

microscope equipped with a W1 Spinning Disk unit, an Andor iXon Ultra DU888 1k x 1k EMCCD camera and a Plan Apo VC

100x/1.4 oil objective in the UCSF Nikon Imaging Center, exposure time was 200 ms with 20% laser power. Approximately 10 xy

locations were randomly selected for each isoclonal population. After background and auto-fluorescence subtraction from cellular

GFP images, the cellular GFP concentration was calculated from the GFP standard curve (Figure S7A). Using the measured cellular

volume and cellular GFP concentration, the absolute number of GFP molecules per cell was calculated. For a review on molecular

counting see (Coffman and Wu, 2014).

Flow Cytometry. Flow cytometry data were collected on an LSRII cytometer (BD Biosciences) with a 488-nm laser used to detect

GFP. The cytometry data were analyzed using FlowJo (http://www.flowjo.com/).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed by Pearson correlation analysis, Kolmogorov–Smirnov test or paired t test. All data are presented

asmean ± SEM or SD. Significance levels were set at P < 0.05. For statistical analysis GraphPad� Prismwas used, unless otherwise

specified.
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