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ABSTRACT  

Stochastic fluctuations (noise) in transcription generate substantial cell-to-cell variability, 

but the physiological roles of noise have remained difficult to determine in the absence of 

generalized noise-modulation approaches.  Previous single-cell RNA-sequencing (scRNA-

seq) suggested that the pyrimidine-base analog (5′-iodo-2′-deoxyuridine, IdU) could 

generally amplify noise without substantially altering mean-expression levels but scRNA-seq 

technical drawbacks potentially obscured the penetrance of IdU-induced transcriptional 

noise amplification.  Here we quantify global-vs.-partial penetrance of IdU-induced noise 

amplification by assessing scRNA-seq data using numerous normalization algorithms and 

directly quantifying noise using single-molecule RNA FISH (smFISH) for a panel of genes 

from across the transcriptome.  Alternate scRNA-seq analyses indicate IdU-induced noise 

amplification for ~90% of genes, and smFISH data verified noise amplification for ~90% of 

tested genes.  Collectively, this analysis indicates which scRNA-seq algorithms are 

appropriate for quantifying noise and argues that IdU is a globally penetrant noise-enhancer 

molecule that could enable investigations of the physiological impacts of transcriptional 

noise. 

 

Keywords:  noise enhancer molecule/ transcriptional noise/ single-cell RNA sequencing  
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INTRODUCTION 

 

Cell-to-cell variability is an unavoidable consequence of the biochemical processes occurring in 

individual cells 1.  While some portion of cell-to-cell variability arises from extrinsic factors (e.g., 

cell size, cycle phase, or microenvironment), a substantial body of literature has demonstrated that, 

in isogenic populations of cells—particularly mammalian cells—a large fraction of the variability 

originates from intrinsic sources, such as stochastic fluctuations (noise) in transcription 2,3.  These 

intrinsic stochastic fluctuations can be quantitatively accounted for by the ‘toggling’ of genes 

between active and inactive expression periods leading to episodic bursts of transcription—

commonly referred to as the two-state random-telegraph model of gene expression 4–7.  The 

resulting transcriptional bursts are amplified upon nuclear export and cytoplasmic mRNA 

processing 8.  Ultimately, these stochastic transcriptional fluctuations can generate substantial 

cellular variability, which has been implicated in cell-fate specification decisions ranging from 

HIV latency to cancer 9–11.   

 

Although a few specific roles of transcriptional noise have been elucidated, it remains unclear how 

broadly this phenomenon impacts generalized physiological processes, particularly in eukaryotic 

and mammalian systems.  Isolating the physiological roles of expression noise would typically 

require one to modulate noise independent of the mean level of expression 12.  While this 

orthogonal perturbation of noise has been achieved in some notable cases 13–15, in practice, it is 

non-trivial to implement.  The complication stems in part from the fundamental linkage between 

the variance (σ2) and the mean (μ) for most physical processes.   For example, the common metric 

for quantifying expression noise, the coefficient of variation (CV), defined as σ/μ, typically scales 

inversely with mean, such that CV decreases as the mean increases 16. Consequently, the 

normalized variance, or Fano factor (σ2/μ) is often used to compare noise for processes with 

different mean values as it does not scale with the mean 17,18.  Regardless of the metric, orthogonal 

noise modulation remains challenging and generalized approaches to modulate noise would be 

useful physiological probes. 

 

To break the 1/μ dependence of CV and orthogonally modulate noise, specific autoregulatory 

architectures (e.g., feedback and feedforward) are typically required 19,20.  However, small 

molecules called “noise enhancers” can also generate increased expression noise without altering 

the mean-expression level 21 by a process known as homeostatic noise amplification 22; a notable 
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contrast to transcriptional activators, which increase mean-expression levels.  We reported the 

molecular mechanism for one particular class of noise-enhancer molecule, pyrimidine-base 

analogs such as 5′-iodo-2′-deoxyuridine (IdU), and used scRNA-seq to show that IdU increase 

noise.  However, scRNA-seq, despite its utility in measuring genome-wide expression 23, suffers 

from well-established issues of technical noise due to small inputs of RNA, amplification bias, and 

differences in capture ability 24 that could obscure the penetrance of IdU-mediated noise 

enhancement. 

 

To better understand the genome-wide effect of IdU, here we reanalyzed scRNA-seq data using 

different normalization algorithms that minimize extrinsic and technical noise 25.  Each algorithm 

identified a different proportion of the genes exhibiting amplified noise and—in the fraction of 

genes with amplified noise—substantial differences in the magnitude of noise amplification.  To 

validate scRNA-seq measurements, we employed single molecule-RNA FISH (smFISH)—the 

gold-standard for mRNA quantification due to its high sensitivity for mRNA detection 26—to 

probe a panel of genes—from across the transcriptome—that displayed the greatest differences in 

noise between different scRNA-seq algorithms.   Collectively, these analyses indicate that IdU is 

a globally penetrant noise-enhancer molecule and could, in principle, be a candidate to probe the 

physiological roles of expression noise for diverse genes of interest.  

 

 

RESULTS 

 

Alternate scRNA-seq normalization algorithms generate differing profiles of expression 

noise indicating noise amplification (Fano > 1) for ~90% of expressed genes 

 

To examine how different scRNA-seq normalization methods influence the quantification of 

transcriptional noise, we employed six commonly-used normalization algorithms to analyze 

scRNA-seq data from IdU-treated versus DMSO-treated (control) mouse embryonic stem cells 

(mESCs) 22.  In this dataset, cells were treated with the established noise-enhancer molecule IdU 

21,27, noise was quantified by examining CV2 relative to the mean, and quality control was 

performed using Seurat 28, prior to all normalizations, to filter out low-expressing cells.  
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Initially, we attempted to account for differences in sequencing depth between IdU and control 

samples using a rudimentary random subsampling (or downsampling) algorithm 29 to normalize 

control and IdU-treated samples to the equal read depths.  The rationale for random subsampling 

is based upon reports that lower sequencing depth can be associated with increased variance 30, 

and subsampling reads to normalize the sequencing depth between samples can, in principle, 

correct for this.  Surprisingly, downsampling suggested that IdU-mediated noise amplification was 

only partially penetrant, with ~78% of transcripts exhibiting amplified noise measured by Fano 

factor—this is compared to over 96% of transcripts exhibiting amplified noise when a standard 

log normalization without downsampling is used (Fig. S1A-B). 

 

To determine if these subsampling results were consistent with other algorithms, we compared the 

results to five other established scRNA-seq normalization algorithms (Fig 1): SCTransform 31, 

scran 32, Linnorm 33, BASiCS 34, and SCnorm 35.  SCTransform is a commonly used normalization 

algorithm that accounts for changes in depth and includes a variance-stabilization transformation 

step.  scran and BASiCS are widely used normalization methods that use “size factors” to eliminate 

technical noise while maintaining biological heterogeneity.  Linnorm utilizes homogenously 

expressed genes and scales the reads accordingly.  SCnorm, similar to SCTransform, groups genes 

based on count-depth relationships and uses quantile regression to generate normalization factors.   
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Figure 1: Common scRNA-seq normalization algorithms generate different quantifications of mRNA 

noise.  scRNA-seq analysis of CV2-vs-mean for ~5,000 transcripts in mESCs treated with IdU (red) or DMSO 

control (black) as analyzed by commonly used normalization algorithms: (A) SCTransform, (B) scran, (C) 

Linnorm, (D) BASiCS, or (E) SCnorm.  (F–J) Mean expression for each of the ~5,000 transcripts in presence 

and absence of IdU using each normalization algorithm; none of the normalizations algorithms generate 

substantial changes in mean expression for IdU-treated cells.  (K–P) CV2 for each transcript in presence and 

absence of IdU using each normalization algorithm; different algorithms generate substantially different fractions 

of transcripts with amplified noise ranging from ~70% of transcripts with amplified noise (SCTransform) to 

~88% of transcripts with amplified noise (SCnorm).  (Q) Quantification showing percentages of transcripts with 

Fano factor fold change (Δ) <1, >1, >1.25 or >1.5 with IdU treatment. Calculations from all scRNA-seq 

normalization algorithm are shown (see Fig. S1 for Downsampling analysis). 
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Despite their substantially different technical schemes, analysis with each of these normalizations 

indicated that IdU induces a substantial amplification of noise (CV2) for most expressed genes 

(Fig. 1A–E).  The IdU-induced noise amplification appeared to be homeostatic (Fig. 1F-J), with 

mean-expression levels largely unchanged by IdU under all algorithms.  However, each algorithm 

calculated a somewhat different percentage of expressed genes with increased CV2 ranging from 

72% to 88% of genes exhibiting increased noise (Fig. 1K–P).  Quantification of noise by analysis 

of the normalized variance (i.e., Fano factor), which in principle eliminates the scaling dependence 

on mean-expression level, showed a similar profile (Fig. 1Q).  Whilst every algorithm showed a 

majority of expressed genes exhibit amplified noise by Fano factor, each calculated a different 

penetrance (i.e., percentage of noise-amplified genes) as well as substantial differences in the 

magnitude of noise amplification among those transcripts with amplified noise.  

 

Overall, scRNA-seq analysis by all normalization algorithms showed that IdU homeostatically 

amplifies noise for the majority of expressed genes without observable changes in the mean-

expression level.  However, each scRNA-seq normalization algorithm calculated a different 

transcriptional penetrance for IdU noise amplification, indicating that additional analysis of 

transcriptional noise via an independent (i.e., non-scRNA-seq approach) was warranted. 

 

RNA quantification by smFISH indicates widespread penetrance of IdU-induced noise 

amplification  

 

To directly quantify RNA levels in individual cells using a non-sequencing-based approach, we 

employed smFISH, a well-established imaging method to assess noise and the gold standard for 

quantitative assessment of mRNA expression 36.  While smFISH enables quantification of mRNA 

abundance in individual cells, it is a relatively low-throughput method requiring distinct 

fluorescent probes and image quantification for each transcript species of interest.  Consequently, 

to generate a pseudo-global view of transcription using smFISH, we selected a panel of eight genes 

(Fig. S1) that satisfied two criteria: (i) they displayed the greatest difference in noise amplification 

as calculated by the different RNA-seq algorithms (Fig. S1C-D), and (ii) the genes were 

compatible with smFISH probe design (i.e., a minimum of 30 probes were predicted to hybridize 

to the transcript).  The selected genes spanned a wide range of gene-expression levels (i.e., across 

2-Logs and genome locations) (Fig. S1E) 37.  We also included previously reported smFISH data 

22 from a ninth gene, Nanog, to  
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benchmark the smFISH analysis.  smFISH probe sets for each gene in the panel were generated, 

cells were imaged in the presence/absence of IdU, and images (Fig. 2A, S2A) segmented and 

analyzed using FishQuant 38.  Extrinsic noise was filtered by analyzing cell size (i.e., cell-area 

distribution in pixel number) by Kolmogorov-Smirnov test and excluding cells in the upper and 

lower tails of cell-size distribution (Fig. S2B).  For each gene, the per-cell mRNA abundance was 

quantified for ~200 cells in order to generate the distribution of each mRNA per cell, in the 

presence and absence of IdU (Fig. 2B).  This analysis revealed greater variance in per-cell mRNA 

levels in IdU-treated samples than controls, and the calculated CV2 values verified that noise 

increased for most genes (Fig. 2C).  Direct comparison of mRNA CV2 values showed significant 

noise amplification for 8 of the 9 genes in the representative panel, without substantial changes in 

Figure 2: smFISH analysis of IdU-induced noise amplification for a subset of genes from across the 

transcriptome. (A) Representative smFISH images of Wipi2 transcripts (white dots) in mESCs treated with 

DMSO (top) or IdU (bottom).  Nuclei are stained with DAPI (blue).  (B) Distribution of per-cell mRNA 

transcripts for eight representative genes +/- IdU.  (C) CV2-vs.-mean analysis as calculated from smFISH +/- 

IdU for each of the genes in the representative panel. (D) Direct comparison of CV2 +/- IdU as calculated 

from smFISH data. Inset: direct comparison of IdU-induced change in mean mRNA from smFISH data.  (E) 

Fold change in Fano Factor for IdU-treated samples compared to DMSO control from smFISH data. 
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mean (Fig. 2D, S3A), in agreement with the scRNA-seq analysis.  Notably, Sox2 appeared to be 

an exception that exhibited a reduction in mean expression (see Discussion). 

 

To ensure that noise amplification, as reported by CV2, could not be explained by changes in mean 

expression, we also analyzed the Fano factor calculated from the smFISH data (Fig. 2E, S3B).  

Fano factor analysis verified that all but one gene in the panel (Wdr83) exhibited IdU-induced 

amplification of noise (Fano factor > 1).  The greatest increased in noise was for Nanog, Mtpap, 

and Farsa (Fano factor > 1.5) whereas Sox2, Snd1, Stx7, Hif1an, and Wipi2 exhibited smaller 

noise amplifications.   

 

To further verify IdU-mediated noise amplification, we tested if the mechanistic underpinnings 21 

of homeostatic noise amplification were satisfied.  Theory predicts that homeostatic noise 

amplification requires reciprocal changes in transcriptional bursting parameters 21; i.e., a decrease 

in transcriptional burst frequency with a corresponding but reciprocal increase in transcriptional 

burst size.  Transcriptional burst frequency can be calculated by scoring the percentage of cells 

with active transcriptional centers (TCs) in smFISH images, and the burst size can be similarly 

calculated if other parameters, such as the decay rate of the specific mRNA, are also known 39.  

Consequently, we calculated burst frequency and burst size for two genes, Sox2 and Mtpap, for 

which mRNA decay rates in mouse embryonic stem cells were known 40.  In agreement with the 

model of homeostatic transcriptional noise amplification, IdU substantially decreased the burst 

frequency (Fig. S4A) and correspondingly increased the burst size (Fig. S4B) for both genes. 

 

Overall, these smFISH data indicate that IdU generates a homeostatic amplification of 

transcriptional noise for 8 out of 9 genes in the representative panel taken from diverse expression 

profiles and locations in the genome.  

 

 

DISCUSSION 

 

This study set out to determine if the pyrimidine base analog IdU, which is incorporated into 

cellular DNA and removed by the cellular base-excision repair (BER) surveillance machinery 41, 

is a globally penetrant noise-enhancer molecule.  Analysis of scRNA-seq data using six different 

normalization algorithms indicated that the amplification of noise by IdU is globally penetrant and 
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likely not an artifact of a particular scRNA-seq analysis algorithm.  However, the scRNA-seq 

analysis also indicated that scRNA-seq algorithms generate variable genome-wide noise profiles 

(Fig. 1).  To validate IdU’s genome-wide effect, we curated a panel of genes that exhibited high 

sensitivity to individual scRNA-seq normalization algorithms and represented both high and low 

expressing genes for downstream orthogonal analysis of transcriptional noise by smFISH.  This 

approach revealed that IdU increased transcriptional noise for 8 out of 9 genes (Fig. 2) and that 

most published scRNA-seq algorithms (with the exception of rudimentary downsampling) were 

fairly accurate compared to the smFISH direct measurement (compare Fig. S1C to Fig. 2E). 

  

One technical limitation of this study is that smFISH analysis is necessarily low throughput and 

limited to the subset of genes for which good probe sets can be designed, which limits the spectrum 

of measurements and the number of genes that can be analyzed.  We attempted to mitigate this by 

exploring genes from across the expression spectrum (Fig. 2C), and by analyzing a substantial 

number of cells per treatment (>170 cells per treatment after filtering extrinsic noise).  Thus, our 

data indicate that IdU likely acts as a noise-enhancer molecule for a large fraction of genes 

irrespective of their mean-expression level.  

 

Notably, our smFISH analysis did not detect an increase in noise for Wdr83.  Considering that IdU 

increases noise via BER, a genome-wide surveillance pathway, it may be surprising that any gene 

fails to exhibit an increase in noise.  It is possible that the low-throughput nature of smFISH may 

have obscured IdU-induced noise amplification.  However, a potential explanation for the selective 

response lies in the putative mechanism by which BER increases noise via DNA topology changes.  

Specifically, the BER enzyme AP endonuclease 1 (Apex1) generates DNA supercoiling which 

leads to an accumulation of RNA Polymerase II; when released, this amplifies transcriptional burst 

size; indeed, the IdU noise effect can be phenocopied by topoisomerase inhibitors, which increase 

DNA supercoiling 22.  Consequently, regions which naturally have increased supercoiling and 

corresponding high levels of topoisomerase may be less sensitive to changes in topology caused 

by IdU and BER- induced supercoiling.  It has been previously reported that Topologically 

Associated Domain (TAD) boundaries are regions that exhibit substantial supercoiling and are 

enriched in insulator binding protein CTCF 42,43, and that Toposimerase IIB is prevalent at CTCF 

sites 44. Intriguingly, Wdr83 has two relatively unique features among the panel of genes tested: 

(i) it contains a relatively large CTCF binding region, and (ii) it is found at a TAD boundary 42.  
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Together these two features may be consistent with IdU acting as a topology-dependent global 

noise-enhancer molecule, as shown by scRNA-seq (Fig. 1) and smFISH (Fig. 2) analysis. 

 

A second point of interest is the case of Sox2.  Whilst most genes analyzed exhibited a homeostatic 

increase in noise—without a substantial change in mean—smFISH revealed that IdU induced a 

decrease in mean Sox2 mRNA, though we note the change in mRNA numbers was less than two-

fold.  Notably, IdU did not alter single-cell Sox2 protein levels in our previous analysis 22.  It is 

possible that the reported negative-feedback regulation of Sox2 45 acts to buffer changes at the 

protein level.   

 

From the practical perspective of quantifying expression noise, this study reveals that common 

analyses can fail to resolve quantitative changes in intrinsic expression noise, particularly for 

individual genes.  A number of approaches have been proposed to overcome these types of scRNA-

seq limitations, including elegant solutions using mathematical modeling methods to address 

technical variability without compromising quantification of biological noise 46, though these can 

be cumbersome to implement.  The analyses herein indicate that it may be advisable to combine 

high-throughput analyses (e.g., scRNA-seq) with lower-throughput direct quantification (e.g., 

smFISH) to quantify changes in transcriptional noise for individual genes as the “ground-truth” 

may lie somewhere in between the results of each analysis.  Regardless, both the scRNA-seq and 

smFISH data argue that IdU appears to be a global noise enhancer which could be leveraged to 

modulate noise without altering mean expression for the majority of genes. 
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SUPPORTING FIGURES 

  

Figure S1: Single Cell RNA Sequencing algorithms show varying penetrance of IdU-induced 

amplification of expression noise.  Related to Figure 1. Direct comparison of Fano value for different single 

cell sequencing normalizations. The 8 genes chosen for smFISH are labeled in  (A) Data used from Desai et 

al., 2021. (B) Downsampling algorithm that matches DMSO sequencing depth with IdU sequencing depth 

using random subsampling. Table of values showing the fold change of IdU vs control for Fano (C) and CV2 

(D) for the 8 genes selected for smFISH (together with Nanog from Desai et al. 2021) across the seven 

normalization algorithms. (E) Genomic locations of genes selected for smFISH. 
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Figure S2: Representative images and extrinsic-noise filtering (by cell-size) for smRNA FISH. Related 

to Figure 2.  (A) Representative smFISH images of mESCs treated with DMSO (top) or IdU (bottom) for 24 

hours with DAPI stain (blue) and mRNA transcripts (gray) fluorescent labeled with TAMRA probe-set. Max 

intensity projections are shown. (B) Left: The cell size distribution of 194 DMSO treated cells and 196 IdU 

treated cells are significantly different (KS test p = 0.007). Right: the 5th and 95th percentile of the whole 

population were removed. The cell size distribution for the remaining 178 DMSO Treated cells and 174 IdU 

treated cells are not significantly different (KS test p=0.21) 
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Figure S3: smRNA FISH shows significantly increased Fano Factor and CV2 with IdU Treatment. (A) Fano 

Factor comparison of samples +/- IdU compared using Wilcoxon matched-pairs signed rank test p =0.0117. (B) 

CV2 comparison of samples +/- IdU compared using Wilcoxon matched-pairs signed rank test p = .0078  
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Figure S4: Changes in burst frequency and burst size with IdU treatment. (A) Transcriptional burst frequency 

for Mtpap and Sox2 as calculated from the fraction of active transcription centers (TC) in smFISH images. (B) 

Calculated transcriptional burst size for Mtpap and Sox2 (see Methods). 
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Captions for supplementary table S1 
 

 

Table S1 (attached separately) 

Sequences of smRNA-FISH oligonucleotide probe for eight genes   
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Data Availability 

This study includes no new data deposited in external repositories. 

Star Methods 

Single-Cell RNA Sequencing Analysis 

The scRNA-seq count matrix available at GSE176044_mesc_bulk_rnaseq_gene_counts was used 

(Data ref: Desai et al, 2021). Before applying each normalization method, both DMSO and IdU 

datasets were subjected to a quality control process.  First, Seurat 28 was used to filter for high-

quality cells using a minimum of 4000 detected genes, 10000 UMI counts, and <10% reads 

mapping to mitochondrial genes per cell..  The resulting count matrix was then further filtered by 

the BASiCS_Filter function from the BASiCS 34 R package with default parameters, which limited 

the analysis to genes with sufficient sequencing coverage for reliable noise quantification.  The 

output count matrix consisted of 811 cells for DMSO and 732 cells for IdU across 4456 genes. 

This output was then used to run 5 normalization pipelines according to their protocols: 

SCTransform 31, scran 32, Linnorm 33, BASiCS 34, and SCnorm 35.  BASiCS was run with default 

parameters and recommended settings (N=20000, Thin=20 and Burn=10000) using the horizontal 

integration strategy (no-spikes). The other packages were run with default parameters. To perform 

rudimentary downsampling (Fig. S1B) the python random.seed function was used to simulate an 

identical sequencing depth for both DMSO and IdU. 81% of DMSO reads were sampled, and 

100% of IdU reads were subsampled. From this subsampled matrix, the same 4445 genes and 1543 

cells included previously were used for further quantification steps.   

Single Molecule RNA FISH 

Probes for the detection of transcripts were developed using the designer tool from Stellaris (LGC 

Biosearch Technologies) (Table S1) setting the minimum number of probes to 30 (TAMRA 

conjugated) for gene transcripts. 1x105 mouse embryonic stem cells were seeded into each well of 
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a gelatin-coated, 8-well Ibidi dish (cat: 80826) in 2i/LIF media.  24 hours following seeding, media 

was replaced with 2i/LIF containing 10mM IdU or equivalent volume DMSO.  After 24 hours of 

treatment, cells were then fixed with DPBS in 4% paraformaldehyde for 10 minutes.  Fixed cells 

were washed with DPBS and stored in 70% EtOH at 4°C for one hour to permeabilize the cell 

membranes.  Probes were diluted 200-fold and allowed to hybridize at 37°C overnight.  Wash 

steps and DAPI (Thermo, cat: D1306) staining were performed as described 

(https://www.biosearchtech.com/support/resources/stellaris-protocols). To minimize photo-

bleaching, cells were imaged in a buffer containing 50% glycerol (Thermo, cat: 17904), 75 mg/mL 

glucose oxidase (Sigma Aldrich, cat: G7141), 520 mg/mL catalase (Sigma Aldrich, cat: C3515), 

and 0.5 mg/mL Trolox (Sigma Aldrich, cat: 238813).  Images were collected on an inverted Nikon 

TiE microscope (Nikon) run using Micromanager 2.0 47 equipped with a CSU-W1 Spinning Disk 

with Borealis Upgrade (Yokogawa, Andor), ILE Laser launch with 4 laser lines 

(450/488/561/646nm, Andor), quad-band dichroic ZT405/488/561/647 (Chroma),  emission 

filters for DAPI (ET447/60), GFP (ET525/50), RFP (ET607/36), and Cy5 (ET685/40) 

(Chroma), piezo XYZ stage (ASI), and Zyla 4.2 CMOS camera (Andor), using a Plan Apo VC 

60x/1.4 Oil objective (Nikon).  Approximately 10 XY regions of interest were randomly selected 

for each condition.  For each image, XY pixel size was 108nm/px, and a Z-step size of 250nm was 

used with over 60 image planes to fully cover the tissue.  Image analysis and spot counting was 

performed using FISH-quant 38.  Cells were manually segmented and analysis was conducted on 

cells of a similar size to minimize extrinsic noise.  Active transcription sites were measured 

according to 39. Burst size was calculated as previously reported 8 using the following equation: 

Burst Size = (λmRNA* μmRNA)/koff where koff = 1- (% of active TC). 
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