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SUMMARY

HIV latency is the chief obstacle to eradicatingHIVbut
is widely believed to be an evolutionary accident
providing no lentiviral fitness advantage. However,
findings of latency being ‘‘hardwired’’ into HIV’s
gene-regulatory circuitry appear inconsistent with la-
tency being an evolutionary accident, given HIV’s
rapid mutation rate. Here, we propose that latency is
an evolutionary ‘‘bet-hedging’’ strategy whose fre-
quency has been optimized to maximize lentiviral
transmission by reducing viral extinction during
mucosal infections. The model quantitatively fits the
available patient data, matches observations of
high-frequency latency establishment in cell culture
and primates, and generates two counterintuitive
but testable predictions. The first prediction is that
conventional CD8-depletion experiments in SIV-in-
fected macaques increase latent cells more than
viremia. The second prediction is that strains engi-
neered to have higher replicative fitness—via reduced
latency—will exhibit lower infectivity in animal-model
mucosal inoculations. Therapeutically, the theorypre-
dicts treatment approaches that may substantially
enhance ‘‘activate-and-kill’’ HIV-cure strategies.
INTRODUCTION

HIV actively replicates in CD4+ T lymphocytes but can also enter

a long-lived quiescent state termed proviral latency in memory

CD4+ T cells (Chun et al., 1997a; Finzi et al., 1997). The popula-

tion of latently infected cells is relatively small in patients (�1 in

106 CD4+ T cells) and does not generate significant viral RNA

(Pierson et al., 2000). However, latently infected cells provide a

critical viral reservoir, which enables lentiviral persistence even

during prolonged antiretroviral therapy (ART). Further, if patients

interrupt ART, persisting latent viruses reactivate, driving HIV to

pre-treatment viral loads within weeks (Richman et al., 2009).

Consequently, latency is the chief barrier to a curative HIV

therapy.
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While latency enables HIV to avoid extinction during ART, the

benefitof latencyprior to theARTera—during thecenturies of nat-

ural lentiviral infections—remains unclear. In fact, latency appears

to have been deleterious prior to ART since latently infected cells

produce no virus and decrease patient viral loads. Given latency’s

reduction of lentiviral replicative fitness, the prevailing hypothesis

is that latency is an evolutionary accident—an epiphenomenon

that only resultswhen lentiviruses infectCD4+ T cells that are tran-

sitioning from activated to quiescent memory states (Coffin and

Swanstrom, 2013;Eisele andSiliciano, 2012;Hanet al., 2007). La-

tency is therefore viewed to be an infrequent bystander effect that

onlyoccursafter aviral-drivenadaptive immune response initiates

and CD4+ T lymphocytes begin to form memory subsets. Yet, a

recent study in Rhesus macaques indicates that latency reaches

high levels within the first 3 days of infection (Whitney et al.,

2014), which is prior to the generation of an SIV-specific adaptive

immune response (Kuroda et al., 1999).

If latency were a non-beneficial viral trait or epiphenomenon,

one would expect it to have been lost due to natural selection

or genetic drift, given lentiviruses’ rapid evolutionary rates. Yet,

a companion study (Razooky et al., 2015 [this issue of Cell])

demonstrates that the ability to establish latency is ‘‘hardwired’’

into HIV’s gene-regulatory circuitry. This study matches recent

data showing that �50% of cell-culture infections—in which

adaptive immune responses are absent—result in lentiviral la-

tency (Calvanese et al., 2013; Dahabieh et al., 2013). Further,

HIV’s auto-regulatory Tat circuit appears optimized to amplify

stochastic fluctuations in viral gene expression, producing fluc-

tuations that are sufficient to induce a probabilistic switch to la-

tency (Burnett et al., 2009; Weinberger et al., 2005; Weinberger

et al., 2008). In general, stochastic expression noise is thought

to be selected against and thus filtered out of regulatory circuits

when not beneficial (Batada and Hurst, 2007; Fraser et al.,

2004). The persistence of a hardwired latency circuit suggests

an unknown selective advantage, which outweighs latency’s

putative fitness cost of reducing long-term viral loads.

One possible selective benefit is that—by providing a long-

lived viral reservoir—latency could enhance lentiviral survival

during unfavorable environmental conditions. Similar ‘‘bet-hedg-

ing’’ hypotheses (Cohen, 1966) have been proposed for bacte-

riophage-l lysogeny (Arkin et al., 1998) and bacterial persistence

(Balaban, 2011). However, lentiviral latency would only provide a

bet-hedging advantage if there were risks of viral extinction due
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to environmental fluctuations. In reality, lentiviruses appear in lit-

tle danger of population crashes, as they evade immune clear-

ance and maintain high viral loads of �105 particles/ml of blood

plasma for years (and lentiviruses clearly did not evolve under

pressure from antiretroviral drugs). Further, lentiviruses only

infect a small percentage (�1%–2%) of available target cells,

making target-cell fluctuations unimportant during chronic infec-

tion. Nevertheless, viral loads remain low during one phase of the

lentiviral lifecycle: initial mucosal infection.

The probability of successful mucosal infection is low, with

<1% of unprotected sex acts between HIV-discordant couples

resulting in self-propagating systemic HIV infections (Fraser

et al., 2007; Gray et al., 2001; Wawer et al., 2005). When suc-

cessful infections do occur, they expand from single founder se-

quences (Kearney et al., 2009; Keele et al., 2008), indicating that

only one variant in the transmitted quasispecies avoids extinc-

tion. Further, animal models of HIV capture a consistent

�6 day delay from experimental mucosal inoculation to self-

propagating infection (Haase, 2011; Zhang et al., 1999), which

implies that the first days of lentiviral infection provide conditions

unsuitable for viral growth.

Theunfavorable conditions of early lentiviral infections typically

occur in the mucosa, where >90% of HIV infections initiate

(Haase, 2011). HIV’s evolutionary precursor in non-human pri-

mates (SIV) also spreads through mucosal transmission—via

sexual activity or fighting with subsequent communal wound

licking (Santiago et al., 2005). Mucosal challenge experiments

in primates with large inoculations provide direct evidence that

the mucosa are initially unfavorable to lentiviral growth: large

inoculations of �109 infectious units (by TCID50) initially burn

outwithin�5days (Miller et al., 2005).Quantitatively, each initially

infected cell lives for�1 day (Markowitz et al., 2003), so the num-

ber of actively infected cells after 5 days scales with (R0
muc)5—

wherein R0
muc is the basic reproductive ratio during early

mucosal infection. Since actively infected cells crash within

�5 days (Miller et al., 2005), (R0
muc)5 approaches 0, implying

that R0
muc < < 1 during initial mucosal infection.

Here, we quantitatively test the hypothesis that latency pro-

vides a bet-hedging advantage that increases the probability of

successful lentiviral transmission despite reducing viral loads

during systemic infection (Figure 1A). The key point is that

increasing the probability of latency (plat) increases the probabil-

ity that each initially infected cell survives initial mucosal infec-

tion. Yet, increasing plat also decreases viral loads in systemi-

cally infected hosts, which reduces the inoculum transmitted to

new hosts. With a higher per-cell survival rate but fewer initially

infected cells, the question is whether latency’s fitness benefits

outweigh its costs—which would establish latency as an evolu-

tionarily beneficial trait that is maintained by natural selection.

RESULTS AND DISCUSSION

Mathematical Models of Lentiviral Transmission
and Rationale for Models
Three classes of mathematical models are developed to quantify

the net impact of latency on lentiviral transmission (Figure S1).

Each class of models generalizes the well-parameterized basic

model of viral dynamics (Nowak and May, 2000) to include
both proviral latency and the conditions of early mucosal infec-

tion (i.e., R0
muc < 1) during which latency may be critical (Exper-

imental Procedures).

The first class of models tracks initial lentiviral infection in the

mucosa alone (Extended Experimental Procedures, Section A).

Given the small numbers of infected cells during initial mucosal

infection, the established model of mucosal infection is stochas-

tic (Pearson et al., 2011). We analyze this experimentally param-

eterized stochastic model—and a deterministic approximation

to this model—to quantify how the probability of viral extinction

in the mucosa depends on the probability of latency (plat).

The second class of models extends the single-compartment

model into a two-compartment model (Figure 1B) that tracks

both initial infection in the mucosa and systemic infection in

the lymphoid tissue (Extended Experimental Procedures, Sec-

tion B). Importantly, the initial and systemic infectionmodel com-

partments only differ in a single experimentally measured param-

eter: R0 (Figure 1B and Table S1). Collectively, the models

predict an optimal value of plat (p
opt
lat = 0.5) that matches latency

frequencies measured in cell culture (Calvanese et al., 2013; Da-

habieh et al., 2013) and is consistent with latency levels

measured in mucosal primate infections (Whitney et al., 2014).

However, the large value of plat does not match the low fre-

quencies of latency observed in chronically infected patients

(Chun et al., 1997b; Ho et al., 2013).

The third class of models incorporates a canonical immune

response (Nowak and May, 2000) into the two-compartment

model (Extended Experimental Procedures, Section C)—since

a key difference between cell-culture models and chronic infec-

tion is the presence of an adaptive immune response. Each

immune parameter added is either tied to a distinct patient-

measured value or has beenmeasured previously in the literature

(TableS2).With noadded freeparameters, the immunemodel fits

all available patient data and predicts the same robust popt
lat value.

Latency’s Net Evolutionary Impact Is the Product of Its
Impact on Both Initial Infection and Systemic Infection
To calculate the optimal plat value, the two-compartment models

track latency’s net evolutionary impact across bothmucosal and

systemic infections. While the nonlinear models are complex, we

decouple latency’s net impact on viral transmission into a prod-

uct of two factors: (1) the average initial inoculum of infected cells

per mucosal inoculation (I0), and (2) the probability that an initially

infected cell establishes systemic infection (pestab) (Figure 1A).

This product can be derived analytically when the number of in-

fected cells is Poisson distributed and when each infected cell

lineage is statistically independent. Under these two assump-

tions, the probability of lentiviral transmission per-mucosal inoc-

ulation (ptransmission) reduces to:

ptransmission = 1� e�pestab I 0zpestab I 0 [1]

The equality in Equation [1] is a direct calculation of thePoisson

probability that at least one infected cell in the inoculum I0 estab-

lishes systemic infection. Critically,ptransmission < 10�2 since <1%

of lentiviral infections result in self-propagating infections (Gray

et al., 2001; Wawer et al., 2005). Given the equality, ptransmission <

10�2 immediately implies that pestab I0 < �10�2.
Cell 160, 1002–1012, February 26, 2015 ª2015 Elsevier Inc. 1003



A

B

Figure 1. HIV Latency as a Bet-Hedging

Strategy for Maximizing Viral Transmission

(A) Schematic of the lentiviral transmission pro-

cess. Lentiviral transmission is illustrated as a

two-compartment process, beginning with viral

inoculation in the mucosa and progressing—in

some cases—to systemic infection in the

lymphoid tissue, where >98% of CD4+ T cells

reside (Murphy, 2011). The parameter plat reflects

the probability that an HIV-infected cell enters

latency. An HIV strain incapable of entering la-

tency (plat = 0) would generate increased viral

loads during systemic infection, transferring more

virions to new hosts. However, the latency-inca-

pable virions would rapidly destroy the small

CD4+ T cell population initially present in the

mucosa of the new host—reducing the proba-

bility of systemic infection (upper). In contrast, an

HIV strain capable of entering latency (plat > 0)

would generate lower viral loads during systemic

infection, transferring fewer virions to new hosts.

Yet, the relatively few transferred virions would

not destroy all mucosal target cells. By entering

long-lived latency in some mucosal cells, the la-

tency-capable strain would increase its proba-

bility of surviving initial infection to establish

systemic infection (lower).

(B) Schematic of the two-compartment model of

lentiviral transmission. The two major processes

controlling the probability of lentiviral trans-

mission (ptransmission) are: (1) the inoculum of in-

fected cells (I0) and (2) the probability that an

infected cell in the inoculum survives initial

infection to establish systemic infection (pestab).

(Right to left) HIV enters a host mucosal site, but

due to the small number of permissive target

cells in the early mucosa (prior to day 6), R0 < 1.

To successfully establish systemic infection, the

virus must avoid extinction until R0 > 1. Critically,

the likelihood of an actively infected cell or a free

viral particle surviving until day 6 to initiate sys-

temic infection is negligible since virus-produc-

ing cells die within 40 hr of infection and viral

progeny are cleared from the system �100-fold

more rapidly. In contrast, latently infected cells

are long-lived and can reactivate once R0 > 1 to initiate systemic viral expansion. Therefore, despite reducing long-term viral loads, latency may increase

ptransmission by increasing viral survival during initial infection. This would make latency evolutionarily beneficial at the population scale.

See also Figure S1.
Having used the equality to establish that pestab I0 <�10�2, we

can discard the quadratic and higher-order terms in the Taylor

Series expansion of e�pestab I 0 with negligible impact. This leads

to the subsequent approximation (i.e., linearization) in Equation

[1]: ptransmissionzpestab I 0.

Given Equation [1], the overall goal of determining whether la-

tency’s benefits outweigh its costs reduces to quantifying la-

tency’s impact on pestab and I0.

Latency Increases the Probability that an Initially
Infected Cell Survives Mucosal Infection and
Establishes Systemic Infection
To quantify latency’s impact on pestab, we begin by tracking len-

tiviral survival during mucosal infection alone. As noted above,

the first 5 days of mucosal infection are characterized by a
1004 Cell 160, 1002–1012, February 26, 2015 ª2015 Elsevier Inc.
lack of detectable actively infected cells (Li et al., 2005;

Miller et al., 2005), indicating that R0 in the mucosa (R0
muc) is

initially < < 1 (Extended Experimental Procedures, Section D).

R0
muc < < 1 is also consistent with the infrequency of successful

mucosal transmissions (ptransmission < 0.01) and the�6-day delay

before systemic infection when lentiviral infections do establish

(Miller et al., 2005).

Both deterministic differential equations models (Figure 2A)

and stochastic Monte-Carlo models (Figures S2A and S2B) cap-

ture the fitness advantage of latency in the mucosa. Model sim-

ulations are performed with R0 < 1 and an inoculated dose of vi-

rus that results in a few dozen initially infected cells, matching

animal mucosal experiments (Haase, 2011; Miller et al., 2005;

Zhang et al., 1999). The quantitative models show that—in the

absence of latency—all virions and infected cells are driven
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Figure 2. An Evolutionary Optimum for Latency

(A) Numerical solutions to Equation [6] showing the dynamics of latently infected cells in early mucosal infection (R0
muc = 0.25). As plat increases, the number of

surviving latently infected cells increases. (Inset) The dynamics of actively infected cells in early mucosal infection showing that as plat increases, actively infected

cells reach extinction more rapidly.

(B) In systemic infection, (R0
LT = 10), increases in plat decrease the virus load (and, therefore, the viral dose transmitted to the next host). Dynamics in (A and B) are

calculated numerically from Equation [6], using the parameters in Table S1 (r = 0).

(C) Schematic flowchart of the derivation of the (optimal) latency probability popt
lat that maximizes ptransmission. Red text indicates key assumptions made at each

step of the derivation. For example, R0
muc < < 1 implies that the vast majority of latently infected cells during initial infection are produced in the first generation,

leading to the approximation LR0>1
init z plat I0. The results of the analytic derivation quantify the tradeoff of latency: increasing plat linearly increases pestab but

decreases I0 by the factor (1-plat). Since this tradeoff is almost equally balanced, the optimal latency probability, popt
lat , approximately equals 0.5.

(D) Normalized probability of host-to-host transmission (ptransmission) as a function of plat. Results shown are obtained either analytically, from Equation [5]

(magenta line), or numerically using the plateau levels of actively infected cells (I) and latently infected cells (L) simulated in A and B (magenta dots). As in C, the

probability of transmission is maximized when plat �0.5.

(E) Normalized probability of host-to-host transmission when systemic infections emerge from non-latent routes (e.g., dendritic cells) with probability fnonlatent > 0

(Equations [S12 and S13]). The maximum probability of transmission occurs at slightly lower plat values, but p
opt
lat is still large.

See also Figure S2.
extinct in the first 5 days of mucosal infection (Figures 2A, inset,

and S2A). In contrast, low levels of latency enable viral survival

(Figures 2A and S2B). To test the robustness of these predictions

across all R0 < 1 and I0 < 100, a continuous-time branching-pro-
cess model was developed (Grimmett and Stirzaker, 1992). The

branching-process model (Extended Experimental Procedures,

Section A) directly computes the viral extinction probability as

a function of time, providing an efficient alternative to averaging
Cell 160, 1002–1012, February 26, 2015 ª2015 Elsevier Inc. 1005



thousands of Monte-Carlo simulations for each R0 and I0. In the

absence of latency, the viral extinction probability approaches 1

by day 5 of mucosal infection, except in the small slice when R0

z1 (Figures S2C and S2D)—which does not match the levels of

R0 inferred from animal mucosal challenge experiments (Miller

et al., 2005).

For completeness, the surviving number of mucosally infected

cells was directly computed using a Wright-Fisher model (Hartl

and Clark, 2007; Extended Experimental Procedures, Section

A). The Wright-Fisher simulations demonstrate that the surviving

number of mucosally infected cells increases approximately lin-

early with plat for each I0 (Figures S2E–S2G). This linear depen-

dence can also be derived analytically. Given that R0
muc < < 1

during initial mucosal infection, the majority of latently infected

cells are produced in the first generation of infection (Extended

Experimental Procedures, Section A). Since these cells are un-

likely to reactivate during the short duration of initial infection,

the number of latently infected cells that survive mucosal infec-

tion iszplatI0, the latent fraction of the inoculum. Thus, both sim-

ulations and analytics indicate that increasing plat approximately

linearly increases the number of infected cells that survive initial

mucosal infection.

Given that latency appears to increase viral survival in the early

mucosa, we next tested whether latency increases the probabil-

ity of systemic infection, which mainly occurs in the lymphoid tis-

suewhere >98%of CD4+ T cells reside (Murphy, 2011). To do so,

the Wright-Fisher model was extended into a two-compartment

model that directly captures the two typical stages of lentiviral

infection: early mucosal infection and systemic (lymphoid) infec-

tion (Extended Experimental Procedures, Section B). Only a sin-

gle parameter value is assumed to differ between the early

mucosal and systemic infection compartments. While R0
muc is

parameterized to be <1, R0 during systemic infection in the

lymphoid tissue (R0
LT) is set to 10 tomatch its value in chronically

infected patients (Nowak and May, 2000).

The two-compartment model fits the available human and an-

imal data of early infections, showing that: (1) only a small frac-

tion of mucosal infections result in systemic infections (Fraser

et al., 2007), (2) successful systemic infections emerge after

�5–7 days (Haase, 2011), and (3) systemic infections initiate

from single ‘‘founder’’ infected cells (Kearney et al., 2009; Keele

et al., 2008). More importantly, the two-compartment model

directly shows that latency increases the probability (pestab) of

systemic infection—with pestab maximized when plat > 0.6 (Fig-

ure S2H; Extended Experimental Procedures, Section E).

Latency Decreases the Inoculum in a New Host
While increasing plat increases the probability of systemic

lymphoid infection for any given inoculum of initially infected

cells (I0), the probability of lentiviral infection also depends on

I0 itself. Critically, I0 is proportional to the viral load of the trans-

mitting patient (Extended Experimental Procedures, Equation

S4). Thus, we can quantify latency’s impact on I0 by measuring

latency’s impact on viral loads in systemically infected

patients.

To track latency’s effect on systemic viral loads, we simulated

the deterministic model in the lymphoid compartment alone (i.e.,

R0 = 10). Initial mucosal infection was not tracked in these simu-
1006 Cell 160, 1002–1012, February 26, 2015 ª2015 Elsevier Inc.
lations because of the data showing that systemic infections

emerge from single ‘‘founder’’ viruses independent of the inoc-

ulum (Kearney et al., 2009; Keele et al., 2008). These data indi-

cate that mucosal dynamics affect the probability of systemic

infection, but not the level once established. Thus, we assumed

the existence of a single founder infected cell and solved Equa-

tion [6] numerically. Assuming successful systemic establish-

ment, the systemic infectionmodel shows that increasing plat de-

creases long-term viral loads (Figure 2B). Consequently,

increasing the frequency of latency (plat) decreases infection

inocula (I0) at the population scale.

The Evolutionarily Optimal Probability of Latency Is�0.5
Given Equation [1], if latency’s benefit to pestab exceeds its cost

to I0, then latency increases the probability of lentiviral transmis-

sion (ptransmission). Mathematically, this net evolutionary benefit of

latency can only occur if the (evolutionarily optimal) value of plat

that maximizes ptransmission is greater than 0. Here, we test

whether the maximizing value of plat is greater than 0, directly

quantifying latency’s net evolutionary benefit.

We first derive pestab as a function of plat. After initial mucosal

infection, only latently infected cells persist, with the number of

surviving latently infected cells defined to be LR0>1
init . As noted

above, due to R0
muc < < 1, the majority of mucosal latent

infections emerge in the first generation of infection, making

LR0>1
init z platI0 (Figures 2A, S2F, and S2G). At least one of these

surviving infected cells must be reactivated (with probability

preact) to establish systemic infection. Thus, the per-inoculum

probability of establishing systemic infection is:

pestab =

 
LR0>1
init

I0

!
preact zplatpreact [2]

Equation [2] emerges from the result that only latently infected

cells survive initial infection in the mucosa (Figures 2A and S2A–

S2E). To demonstrate robustness, below we introduce a

‘‘leakage’’ probability (fnonlatent) that reflects the fraction of sys-

temic infections that are established by non-latent cells—

including Langerhans dendritic cells, actively infected cells,

and free virions.

We next solve for I0 as a function of plat. As noted above, the

average infectious dose (i.e., I0) that can be transmitted to a

new individual is directly proportional to the time integral of the

viral load—! V(t)dt, Equation [S4]—over the duration of systemic

infection (Nowak and May, 2000). Analytically solving this time

integral yields (Extended Experimental Procedures, Section B):

I0zconstðplatÞ
�ð1� platÞRLT

0 � 1
�

[3]

The constant term in Equation [3] only implies constant in

plat—it may depend on other parameters. Further, Equation [3]

is solved under the assumption that latently infected cells rarely

reactivate prior to cell death (i.e., r < < dL in Table S1). This con-

servative assumption reduces the optimal level of latency by

presuming that latently infected cells generally die before

contributing to viral loads. Given this maximal fitness cost, la-

tency reduces the reproductive ratio during systemic infection,

R0
LT, by the factor (1� plat).



By combining Equations [1–3], ptransmission emerges as a func-

tion of plat (Figure 2C):

ptransmissionzpestab I0zconstðplatÞpreactplat

�ð1� platÞRLT
0 � 1

�
[4]

Equation [4] shows that, for each value of R0
LT, the probability

of viral transmission has an optimum at a specific plat. To

analytically derive this optimum, we make the simplifying

assumption that preact is constant in plat. This makes

ptransmissionfplat,½ð1� platÞRLT
0 � 1�. Differentiating the simplified

transmission probability with respect to plat yields the following

optimal probability of latency, denoted popt
lat :

popt
lat z

1� �1�RLT
0

�
2

[5]

Strikingly, for a typical value of R0
LT �10 (Nowak and May,

2000), popt
lat z0:5 is the probability of latency that maximizes len-

tiviral transmission (Figure 2C).

In agreement with these analytic derivations, numerical solu-

tions also show that ptransmission has an optimum at plat z 0.5

(Figure 2D). The numerical simulations are generated by directly

calculating ! V(t)dt in model runs, rather than approximating it via

Equation [3]. Sensitivity analyses show that this optimum at

platz0:5 exists across the entire observed range of R0
LT values

(Figure 2D).

Large Optimal Latency Probability Is Robust to Changes
in Model Assumptions
The main prediction of a large popt

lat value remains valid even if

one removes key mathematical assumptions. In particular, the

two-compartment Wright-Fisher model (Extended Experimental

Procedures, Section B) inverts the assumption that preact is

constant in plat, allowing preact to strongly decrease in plat.

Even in this extreme scenario—in which latency has a substan-

tial fitness cost beyond its reduction of viral loads during sys-

temic infection—popt
lat > 1/3 (Figure S2I). Similarly, the large

popt
lat value remains valid when one relaxes the assumption

that only latently infected cells seed systemic infections. To

show this, we analytically re-calculated popt
lat when a fraction

(fnonlatent) of successful infections are established via non-latent

routes (Extended Experimental Procedures, Section E). Even if

80% of lentiviral transmissions are established via non-latent

routes, popt
lat = 0.1. More generally, as long as fnonlatent is less

than 100%, latency remains evolutionarily beneficial (Figures

2E and S2J).

Strikingly, relaxing other model assumptions increases the

large popt
lat value. For example, relaxing the assumption that

latently infected cells die prior to reactivation (i.e., r < <

dL) reduces the cost of latency during systemic infection

and therefore increases the optimal latency probability. In

fact, if r R dL, p
opt
lat = 1 (Extended Experimental Procedures,

Section E). Further, if lentiviral transmissibility saturates at

high viral loads (Fraser et al., 2007)—so that latency’s

decrease of steady-state viral loads does not decrease

I0—then popt
lat would again equal 1, due to the absence

of a cost to latency (Extended Experimental Procedures,

Section E).
Simplified Two-Compartment Model Fits the High
Frequencies of Latency Measured in Experimental
Models
The predicted value of popt

lat �0.5 matches the latency fre-

quencies of 50% (Dahabieh et al., 2013) or higher (Calvanese

et al., 2013) measured in cell culture. popt
lat �0.5 is also consis-

tent with a recent in vivo study in Rhesus macaques, in which a

large reservoir of latently infected cells is documented on day 3

of mucosal infection (Whitney et al., 2014). However, popt
lat �0.5

is inconsistent with the low latency frequencies measured in

chronically infected patients. Only 1 in 106–107 patient CD4+

T cells appear to be latently infected (Chun et al., 1997a; Seda-

ghat et al., 2007). This has led to estimates of plat �10�5 �10�4

(Rong and Perelson, 2009a; Sedaghat et al., 2007). While more

recent studies indicate that the latency frequency in patient

cells is �60-fold higher (Ho et al., 2013), this still leaves plat <

< 0.5 during chronic infection. Below, we show that the dichot-

omy between latency’s high frequency in early infection and

cell culture and latency’s low frequency in chronic infection

can be explained by the onset of the adaptive immune

response.

Mathematical Models Incorporating the Immune
Response Are Required to Explain the Divergent
Latency Frequencies between Experimental Models
and Patients
Unlike early mucosal infections or cell-culture infections, chronic

lentiviral infections contain an HIV-specific adaptive immune

response (Turnbull et al., 2009). Previous work has shown that

this adaptive immune response must be incorporated into the

basic model of viral dynamics (De Boer and Perelson, 1998;

Nowak and May, 2000) to fit the 2–3 log drop in viral loads be-

tween the viral peak during acute infection and the viral set point

established during chronic infection (Stafford et al., 2000). We

hypothesized that incorporating a canonical adaptive immune

response (De Boer and Perelson, 1998; Nowak and May, 2000)

would also be necessary to observe the reduced level of latently

infected cells documented during chronic infection.

A substantial body of literature suggests that the model as-

sumptions thatplat and r are constantmust be relaxed to account

for the adaptive immune response. In particular, the activation

levels of CD4+ T cells appear to increase during chronic infection

in vivo, as is measured by the expression levels of three activa-

tion markers (Li et al., 2005) and the increased turnover rates

of CD4+ T cells (Mohri et al., 1998). While the exact mechanism

is unknown, one potential driver of CD4+ T cell activation is the

body’s homeostatic response to the depletion of CD4+ T cells

during acute infection (Mohri et al., 1998). Another potential

mechanism is CD8+ T cells’ secreting activating cytokines

such as TNF-a (Murphy, 2011). Whatever the mechanism,

cellular activation factors sharply decrease plat and sharply acti-

vate HIV transcription (Calvanese et al., 2013; Chun et al., 1998;

Siliciano and Greene, 2011), for example, by accumulating tran-

scription factors (e.g., NF-kB) that activate the HIV LTR pro-

moter. Further, in the companion study (Razooky et al., 2015),

mathematical modeling shows that cellular activation levels

bias HIV circuit output (i.e., plat and r), even though latency is

hardwired into the circuit.
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Figure 3. Incorporating the Immune Response Explains the Diver-

gent HIV-Latency Frequencies between Experimental Models and

Patients

(A) Extended model of systemic HIV infection, which includes CD8+ T cells (E)

that kill actively infected cells (or suppress viral replication) and activate

latently infected cells (Equations [S9] and [S10]).

(B) The latency probability (plat) and reactivation rate (r) change dramatically

around the time of the viremia peak due to the immune response (e.g., due to

bystander cytokine activation by immune cells, Equation [S10]). Inclusion of

immune cells into the model is capable of interpreting the low incidence of

latently infected cells in chronically infected patients.
Since an adaptive immune response is associated with an in-

crease in CD4+ T cell activation levels (Li et al., 2005) that re-

duces plat and increases r (Calvanese et al., 2013; Chun et al.,

1998; Siliciano and Greene, 2011), we hypothesized that the

adaptive-immune response could be responsible for the

reduced plat levels in chronically infected patients (Figure 3A).

This hypothesis was quantitatively tested by allowing plat and r

to vary as functions of the effector CD8+ T cell concentration,

E[t] (Extended Experimental Procedures, Section C). Before

the initiation of the adaptive-immune response (i.e., before

chronic infection), the model naturally generates high latency

probabilities of �0.5 and low reactivation rates, as in the simpli-
1008 Cell 160, 1002–1012, February 26, 2015 ª2015 Elsevier Inc.
fiedmodels above. However, after the viremia peak, cellular acti-

vation (Li et al., 2005) and cell death (Doitsh et al., 2010) become

substantial, increasing r(E[t]) to high levels and decreasing plat(E

[t]) to low levels (Figure 3B). As a result, the immunemodel mech-

anistically explains the divergent latency frequencies measured

between experimental models (cell culture and non-human pri-

mates) and chronically infected patients (Figure 3B).

Models Incorporating the Immune Response Fit
Available Patient Data while Retaining the Robust
Optimal Latency Prediction
While the immune-responsemodel interprets the low levels ofplat

measuredduring chronic infection, validation against all available

patient data is acritical test of themodel. Thus,we testedwhether

themodel could recapitulate extant patient data on: (1) viral loads

before ART (Fraser et al., 2007), (2) effector T cell concentrations

before ART (Turnbull et al., 2009), (3) latently infected cells before

ART (Chun et al., 1997b), and (4) latently infected cells after ART

(Finzi et al., 1999). Strikingly, the extended immune-response

model is able to fit these four data plateaus (Figure 4A), using

established parameter estimates (Table S2). In particular, the im-

mune-response model reproduces the depressed latent reser-

voir of �106 cells measured in chronically infected patients.

Further, themodel captures the�1 log drop in the latent reservoir

under ART (Figure 4A), because ART leads to antigen depletion.

This causes the immune-cell population to contract and the reac-

tivation rate r(t) to decrease to its low background level. To be

sure that these fits were not artifacts due to model complexity,

we also tested simplified immune response models (Extended

Experimental Procedures, Section E). While these simplified

models fit the four steady-state plateaus, they cannot reproduce

the pre-steady-state kinetics measured in patients (Figure S3). In

contrast, the full immune model fits both steady-state and pre-

steady-state kinetics (Figure 4A, inset), including the viral decay

kinetics measured in patients who undergo ART (Markowitz

et al., 2003).

Critically, the level of the adaptive immune response does not

change the prediction of the simplified model (i.e., the model

without an immune response) that the initial latency probability

platð0Þ has a large optimum of �0.5 (Figures 4B and S3). As a

result, the prediction of the high optimal latency probability is

directly applicable to natural lentiviral hosts even if they exhibit

depressed immune responses. Further, as in the simplified

models lacking an immune response, the large popt
lat value is pre-

served even when a large fraction of systemic infections are

mediated by non-latent cells (Extended Experimental Proce-

dures, Section E). The optimal latency prediction is also robust

to perturbations of epidemiological assumptions, such as the

monotonic dependence of lentiviral transmission on viral loads

(Extended Experimental Procedures, Section E). Overall, the

robustness of popt
lat in the immune model matches the robustness

of popt
lat in the simplified models.

Experimental Depletion of CD8+ T Cells in SIV-Infected
Macaques Will Increase the Latent Reservoir �3 Logs
More Than Viremia
The immune model argues that CD8+ T cells depress the latent

reservoir during chronic infection—either directly (e.g., through
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Figure 4. The Extended Immune-Response Model Fits the Available

In Vivo Data and Does Not Change the Optimal Latency Probability

for Resting Cells, popt
lat (0)

(A) Dynamics of cell compartments during systemic infection calculated from

Equations [S9] and [S10]. Antiretroviral therapy (ART) initiated during steady-

state infectioncausesadeclineof the latent reservoir (L). Thesaturationof the fall

in the latent reservoir is due to the decline in immune cells (E) during ART. (Data

points across human patients) Virus load prior to ART (Fraser et al., 2007) (green

triangles); latent cellsprior toART (Chunet al., 1997b) andafter highlyactiveART

(Finzi et al., 1997) (cyan triangles); effector CD8 T cells (Turnbull et al., 2009) (red

triangles). For each data set (triangles), box-and-whisker plots show the upper

and lowerquartilesof thepatientdata. (Blowout)Virus loadafter theonsetofART

(Markowitz et al., 2003) (green triangles, error bars show SD).

(B) Normalized transmission rate ptransmission as a function of plat(0) calculated

from the dynamics in A and Equation [1]. Two cases are shown for comparison:

with immune cells (E, green triangles) and without immune cells (E =N = 0, blue

curve). Inclusion of immune cells into the model only weakly affects the pre-

diction of a large optimal latency probability for resting cells, popt
lat (0) �0.5.

Model parameters in A and B are in Tables S1 and S2 (with R0
LT = 15 and

plat(0) = 0.5 in A). See also Figure S3.
secreted cytokines) or indirectly (e.g., through activation of

downstream cell types that secrete factors). Thus, a direct test

of the model can be achieved by depleting CD8+ T cells with

anti-CD8 antibodies. CD8 depletion should increase the latency

probability (plat) toward its original high value of �0.5 and

concomitantly decrease the reactivation rate (r) toward its orig-

inal low value. In fact, the model quantitatively predicts the

outcome of this experiment. Whereas previous CD8 depletion

studies have already measured an�1–3 log increase in the num-

ber of actively infected cells following CD8 depletion in SIV-in-

fected Rhesus macaques (Jin et al., 1999; Metzner et al., 2000;

Schmitz et al., 1999), the model predicts that the latent reservoir

will increase by �5 logs following CD8 depletion (Figure 5A).

Thus, the increase in the latent reservoir would be �3 logs

greater than the increase in actively infected cells and viremia
(Figure 5B). A corollary prediction is that CD8 depletion during

early pre-peak infection (Matano et al., 1998), prior to a high-level

adaptive immune response, will only increase the latent reservoir

�2- to 3-fold and will thus be harder to reliably measure (Fig-

ure S4). Notably, these experimental tests of the model require

viral outgrowth assays (Finzi et al., 1997) since directly

measuring proviral DNAwill only report on actively infected cells,

which outnumber latently infected cells by orders of magnitude.

A viral outgrowth assay post-CD8 depletion would provide quan-

titative verification of the model and would consequently test the

model’s output that latency is a viral bet-hedging strategy tuned

by natural selection.

Viral Strains Engineered to Have Higher Replicative
Fitness—via Reduced Latency—Will Exhibit Lower
Infectivity in Animal-Model Mucosal Inoculations
A more direct experimental test of the model would involve

mucosal challenge experiments using recombinant SIV strains

engineered to have substantially reduced latency probabilities.

Engineering strains with reduced latency efficiencies appears

possible since different HIV-1 clades are already known to

exhibit different latency frequencies. These clade-specific differ-

ences appear to be driven by cis elements within the HIV-1 LTR

(Jeeninga et al., 2008; van der Sluis et al., 2011). The model

directly predicts that the reduced-latency recombinants will

establish self-propagating systemic infections less frequently

than the wild-type strains maintaining high latency frequencies.

Further, these reduced latency strains could be quantitatively

tested for increased replicative fitnesses via competitive growth

assays with wild-type strains. If decreasing latency both

increased replicative fitness and decreased successful lentiviral

transmission, this would directly show that proviral latency pro-

vides a bet-hedging advantage that increases viral transmission

despite reducing steady-state viral loads.

Proviral Latency Contrastedwith AlternateMechanisms
of Initial Viral Survival
A natural question is whether alternatives to latently infected

CD4+ T cells exist that also increase the probability of initial viral

survival in the mucosa. One proposed non-latent route is den-

dritic cell migration from the mucosa to the target-cell rich

lymphoid tissue (Kahn and Walker, 1998; Wu and KewalRamani,

2006). More specifically, Langerhans dendritic cells present in

the mucosa can be infected by HIV and are prone to migration

to the lymphoid tissue, where they can support subsequent

dissemination of HIV by cis transfer (Peressin et al., 2014). Yet,

Langerhans cells’ dissemination of HIV may be partially blocked

by neutralizing antibodies (Su et al., 2012). Follicular dendritic

cells may provide another route of viral survival; however, these

cells do not migrate to the mucosa (Murphy, 2011). In contrast to

dendritic cells, proviral latent cells are neither impacted by

neutralizing antibodies (being quiescent) nor blocked by the

mucosal barrier, which has been proposed to be a viral bottle-

neck (Haaland et al., 2009). Latency can thus act as a type of

‘‘Trojan horse’’ for the virus. More fundamentally, even if alterna-

tive routes of initial viral survival exist, the results of this study

(i.e., popt
lat >0) remain robust as long as latency seeds some frac-

tion of systemic infections (Figures 2E and S2J).
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Figure 5. Depletion of CD8+ T Cells in SIV-In-

fected Macaques Is Predicted to Increase

the Latent Reservoir Significantly More

Than Viremia

(A) Predicted dynamics in systemic infection for the

extended model (Equations [S9] and [S10]). Data

points and parameters are as in Figure 4, with the

upper and lower quartiles of the patient data (tri-

angles) shown in box-and-whisker plots.

(B) The ratio of virions to latently infected cells will

be inverted following CD8+ T cell depletion (post-

depletion corresponds to day 125 in A). The dra-

matic 2-log increase in viremia has been observed,

as shown by the data points at 1 week post-

depletion in Jin et al. (1999) and Schmitz et al.

(1999). The dashed horizontal line at 10�3 RNA/ml/

cell corresponds to a 1:1 ratio of latently and

actively infected cell counts. Blue bars correspond

to the parameters and compartment sizes in the

simulation example in A. Themaximal expected errors (vertical bars) are estimated from thewhisker box borders in A (the twomiddle quartiles). Since the dynamic

balance between actively infected cells and latently infected cells is modulated by plat and r, the depletion of immune cells affecting plat and r is predicted to

change this balance and disproportionately increase the latent reservoir.

See also Figures S4 and S5.
Suppressing Latent Reactivation in the First Week of
Infection Could Substantially Reduce the Latent
Reservoir, Enhancing ‘‘Kick-and-Kill’’ Therapy
The model presents a potential therapeutic strategy that ex-

ploits the need for latently infected cells to reactivate to both

establish systemic infection and dramatically increase the

size of the latent reservoir (Figure S5). Thus, if the early reac-

tivation rate were reduced—for example, by suppressing an-

tigen-presenting cell (APC) migration (Peressin et al., 2014) or

HIV transcriptional reactivation (Weinberger et al., 2008)—

systemic infection would be rendered less likely and the

latent reservoir size would be substantially decreased (Fig-

ure S5). While a caveat of this proposed approach is detec-

tion and treatment within the first week of infection, similar

early treatments have been achieved; for a review, see

Haase (2011). Critically, a substantially smaller latent reser-

voir of �102 cells would require the reactivation of far fewer

latent cells by imperfect ‘‘shock-and-kill’’ strategies (Archin

et al., 2012; Deeks, 2012). As a result, suppression of reac-

tivation during the first week of infection followed by shock

and kill could substantially enhance the chances of HIV

eradication.

Implications for Alternate Antiviral Therapy Approaches
A further implication of the result that latency is a hardwired,

evolutionarily maintained trait is that it may be easier to control

HIV by increasing, rather than purging, the latent reservoir (Dar

et al., 2014; Weinberger and Weinberger, 2013; Weinberger

et al., 2008). Current shock-and-kill therapies are fighting natu-

ral selection in attempting to reactivate each of �105 latent

cells. In contrast, discovering a non-toxic compound that

switches 90%–95% of actively infected cells to latency would

drive HIV’s basic reproductive ratio (R0) below 1, making HIV

infection unsustainable. While still a hypothetical avenue,

enhancing viral latency may provide a viable alternative if

shock-and-kill strategies fail to achieve their goal of complete

eradication.
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EXPERIMENTAL PROCEDURES

A Simplified Two-Compartment Model to Quantify the Net Impact of

Latency on Lentiviral Transmission

All models described in the main text are variations of the well-parameter-

ized basic model of viral dynamics (Nowak and May, 2000) expanded to

include latent infections (Rong and Perelson, 2009a, 2009b; Sedaghat

et al., 2007, 2008). Absent an immune response, the deterministic

form of the models is captured by the following ordinary differential

equations:

Uninfected 0target0 cells
dT

dt
= b|{z}

replenishment

� dTT|ffl{zffl}
natural death

� kVT|ffl{zffl}
infection

Actively infected cells
dI

dt
= ð1� platÞkVT|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

active infection

� dII|{z}
death

+ rL|{z}
reactivation

Latently infected cells
dL

dt
= platkVT|fflfflfflffl{zfflfflfflffl}

latent infection

� dLL|{z}
death

� rL|{z}
reactivation

Virus
dV

dt
= ndII|ffl{zffl}

production

� cV|{z}
clearance

[6]

In the model above, uninfected ‘‘target’’ cells (T) are produced at rate b,

decay at rate dT, and can be infected by virus particles (V) at rate k. Upon viral

infection, target cells become either latently infected cells (L) with probability

plat or become actively infected (virus-producing) cells (I) with probability 1 �
plat. Latently infected cells reactivate into actively infected cells at rate r or

die at the (slow) rate dL. Actively infected cells produce ‘‘burst sizes’’ of n vi-

rions as they die at rate dI. Virions decay at the relatively fast rate c. All param-

eter values are given in Table S1; Table S2 contains parameters for the model

extended to include an adaptive immune response (Extended Experimental

Procedures, Section C).

Critically, the infection models can be simplified by re-parameterizing the

equations in termsof thebasic reproductive ratio:R0=bkn/cdT. This ‘‘non-dimen-

sionalization’’ enables us to capture the disparate dynamics between mucosal

infection (Figure 2A) and systemic infection (Figure 2B) by simulating the same

model for both infection stages and only varying a single parameter, R0. Further,

R0
muc is experimentally bounded to be < < 1 from the viral dynamics during initial

infection (Miller et al., 2005), andR0
LT is similarlymeasured to be�10 during sys-

temic infection (Nowak and May, 2000). As a result, no assumptions about un-

known parameter values are needed to obtain the optimal latency probability

ðpopt
lat Þ. More directly, Equation [5] shows that ðpopt

lat Þ only depends on R0
LT



(for detailed derivations and tests of the models, see Extended Experimental

Procedures).
SUPPLEMENTAL INFORMATION
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Supplemental Information

Figure S1. Progression of Mathematical Models, Related to Figure 1

A flowchart is developed to summarize the three classes of mathematical models developed in the main text. Each class of models generalizes the well-

parameterized basic model of viral dynamics (Nowak andMay, 2000) to include both latency and the conditions of early mucosal infection (i.e., R0
muc < 1), during

which latency may be critical. Collectively, the models of increasing biological realism quantify both the costs and benefits of latency during lentiviral trans-

mission, predicting an optimal frequency of latency that fits the available patient data in both animal models and patients.
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Figure S2. Stochastic Simulations: Latency Increases Infection Survival when R0 < 1, Related to Figure 2

(A) 10 representative runs of aGillespie Monte Carlo simulation of the one-compartment initial infectionmodel with plat = 0 (Eqs S1; for parameters, seeSection A).

Despite initial active infection of �10-20 cells (blue), most infections go extinct within 3-5 days. (B) 10 Gillespie runs repeated with plat = 0.01. Latently infected

cells (green) survive for an extended period, preventing the extinction of infections. Differences in the survival of actively infected cells in A and B reflect the

variance between stochastic model runs and are not statistically significant. (C) Extinction probabilities in the absence of latency (plat = 0), analytically derived via

the branching-process model (Section A). Extinction probabilities are calculated at day 5 post-mucosal inoculation for each R0 and each inoculum I0.

(D) Extinction probabilities in the presence of latency, for plat = 0.001, 0.005, 0.01, 0.05, 0.1, and 0.5. Extinction probabilities are again calculated via the

branching-process model at day 5 post-mucosal inoculation. Even low latency probabilities (plat �10-2) substantially increase survival of infections when R0 < 1.

(E) Number of surviving infected cells (at day 10 and R0 = 0.25) as functions of plat and I0. The number of latently infected cells increases approximately linearly

with plat. Results are directly calculated from an analytic single-compartment Wright-Fisher approximation (Section A). (F) A two-compartment Wright-Fisher

model (Section B) tracks the infection dynamics through both initial mucosal infection (R0
muc < 1) and initial systemic infection in the target-cell rich lymphoid

tissue (R0
LT > 1). 10 random runs of the stochastic model, at 4 different values of plat, quantify actively infected cells in the mucosa (blue), latently infected cells

(green), and actively infected cells during initial systemic infection (red). Parameter values areR0
muc = 0.25,R0

LT = 10,dI= 0.5, r= 0.006 during active infection, and

r = 0 after all actively infected cells go extinct. Notably, while individual latent cells are able to reactivate at any time during activemucosal infection with probability

r, the latent cells that reactivate later in initial infection (where R0 < 1) have the highest probability of surviving to reach the target-rich environment (R0 > 1).

Therefore, the onset of systemic infection (red lines) occurs during a tight time period. (G) Fraction of latently infected cells in the mucosa that survive initial

infection, Linit
R0 > 1 / I0, increases approximately linearly (pink). The reactivation probability preact decreases with plat (blue). Each point is an average of 104 model

runs of the coupledWright-Fisher model (same for panels H and I). (H) The product of the two curves in (G) results in a probability of systemic infection per initially

infected cell (i.e., pestab = (Linit
R0 > 0/I0) preact), which peaks at plat �0.6. (I) The net transmission probability (including the decreasing dependence of preact on plat)

peaks at plat �1/3. (J) Inclusion of systemic infections seeded by non-latent routes preserves the large value of popt captured in Figures 2C-D. The parameter

fnonlatent (recalculated a posteriori at plat = popt) is derived analytically in Eq. [S13].
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Figure S3. Effect of CTL on Virus Dynamics: The Extended Model and Two Intermediate Models, Related to Figure 4

(A) Inclusion of cytotoxic immune cells in the model does not affect the height or shape of the infection peak but does lower the steady-state infection level. Solid

curves: The extended model with immune cells (Section C, Eqs S9-S10). Dashed curves: Identical model without immune cells (E = N = 0). (B) Simplified model l:

eliminating the eclipse phase of infection (Section E) predicts a precipitous drop in viremia and infected cells under drug therapy. This rapid decay is not observed

in patients, where the viremia decay occurs at the rate of �1/day [(Davenport et al., 2004a; Schmitz et al., 1999; Stafford et al., 2000), also see close-up in

Figure 4A]. (C) Zoomed-in view of the viremia drop in the absence of an immune eclipse phase. (D) Simplifiedmodel 2: fixing the level of target cells T at their levels

in uninfected patients (Section E). Keeping a fixed (i.e., large) level of target cells results in a giant peak of actively infected cells, which overshoots the uninfected

T cell population, as well as dramatic oscillations. These features are not observed in patients (who show dynamics similar to those in Figure 4A). Parameters: plat
(0) = 0.8 in (A), 0.5 in (B-D); other parameters are given in Tables S1-S2.
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Several-Fold, Related to Figure 5

The depletion of CD8 T cells occurs from day 7 through day 28 (days 0 to 21 of systemic infection). The depletion of naive precursors is limited at 99% (Schmitz

et al., 1999). The right subpanel shows the dynamics of acute infection from Figure 4A. Importantly, the peak of latent cells in acute infection is sensitive to model

variations (i.e., non-robust).

S4 Cell 160, 1002–1012, February 26, 2015 ª2015 Elsevier Inc.



BA

C

p
es

ta
b

 (x
 1

0–2
)

Reactivation Rate (r) (x 10–3)
2.5 2.0 1.5 1.0 0.5 0

0

0.2

0.4

0.6

0.8

1.2

1.0

Expression
Suppressor

No Expression
Suppressor: r = 6 x 10–3

Expression
Suppressor: r = 2 x 10–4

Actively Infected
in Mucosa

Latent in Lymph

Actively Infected
in Lymph

Days Post-transmission (t)

No Expression
Suppressor: r = 6 x 10–3

Actively Infected
in Mucosa

Latent in LyLL mph

Actively Infected
in LyLL mph

0 1412108642
0

10

5

15

20

25

30

C
el

ls

Days Post-transmission (t)

Expression
Suppressor: r = 2 x 10–4

0 1412108642
0

10

5

15

20

25

30

C
el

ls

Figure S5. Suppressing Reactivation in the First Week of Infection Will Reduce the Latent Reservoir Size during Systemic Infection,

Enhancing the Likelihood of Successful ‘‘Kick-and-Kill’’ Therapy, Related to Figure 5

(A) Stochastic simulations of the Wright-Fisher model (Section A in Extended Experimental Procedures) for a typical reactivation rate, r = 63 10�3/day, showing

the establishment of self-propagating systemic infection beginning during days 4-6. (B) Representative simulations when the reactivation rate is reduced 30-fold

to r�23 10�4. (C) The probability of systemic HIV infection decreases when the reactivation rate is suppressed by an external intervention during the first week of

infection. The remaining non-activated latent compartment is relatively small (Figure 2A) and can be decreased further by an ‘‘activate-and-kill’’ therapy.
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