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Table S1. Parameters of the Basic Model of Initial and Systemic Infection, Related to Figure 1 
 
Notation Definition Units Value Reference 

R0
muc Reproduction ratio in 

initial infection 
dimensionless 

= 0.1   Fig. 2A &  
           Fig. S2A-B  
=0.25  Fig. S2F 

(Li et al., 2005; Miller 
et al., 2005) 

R0
LT Reproduction ratio in 

systemic infection 
dimensionless 

=10     Fig 2 
=15*   Fig 4-5 &     
           S3-S4 
 

(Nowak et al., 1997) 

bmuc	  
Linear replenishment 
rate of target cells in 
initial infection	  

[cells/day] R0
muc

 = bmuc nk/cdT  
 ** 

bLT	  
Linear replenishment 
rate of target cells in 
systemic infection	  

[cells/day] 2.1011 dT	   *** 

k	   Virus infectivity 
parameter	   [1/day/RNA copy] 

]  𝑅!!" = !!"!"
!!!

 

** 
  

n	   Number of virions 
from an infected cell	   [RNA copy/cell] 

c	   Virion clearance rate	   [1/day] 

	   	    	    

dT	  
Death rate of target 
cells	   [1/day] 0.1	   (Nowak et al., 1997) 

(Stafford et al., 2000) 

dI	  
Death rate of virus-
producing cells	   [1/day] 1.0	   (Klatt et al., 2010) 

dL Death rate of latent 
cells [1/day] 10-3-10-4 (Finzi et al., 1997; 

Sedaghat et al., 2008) 

r Activation rate of 
latent cells [1/day] 

init. infec.: 6.10-3  
  systemic infec.:  
r(0) = 10-3-10-4 
r(E) = Eq. [S10] 

(Finzi et al., 1997; 
Sedaghat et al., 2008) 

 
plat or p 

Probability of latency dimensionless Free parameter **** 

fact 
Fraction of systemic 
infections via non-
latent routes at p = 0.5 

dimensionless Free parameter only 
in Fig. 2E, S2H N/A 

fnonlatent 

 
Fraction of systemic 
infections via non-
latent routes at p = popt 

dimensionless Eq. [S13] Function of p, fact 

  
*       When an immune response is incorporated, R0

LT is increased by a factor of 1.5 to account for the viral eclipse phase, 
which slows down the predicted viral expansion (Klenerman et al., 1996b; Sergeev et al., 2010b). 
**     Parameters bmuc, k, c, n are set at arbitrary values constrained to match the relevant value of R0 
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***   bLT corresponds to the total CD4 cell count of 2.1011 before infection (Murphy, 2011). 
**** popt only depends on R0

LT (Figures 2C-D) 
 
 
Table S2. Additional Parameters of the Immune-Response Model, Related to Figure 3 
 
Notation Definition Units Value Reference 
a Maximum proliferation 

rate of CTLs 
[1/day] a-dE = 0.5 (De Boer et al., 2003) 

dE CTL death rate [1/day] 0.75 Data fitting* 
dIE Inverse length of eclipse 

phase 
[1/day] 1.4/day (Brandin et al., 2006; 

Markowitz et al., 2003) 
E0 Number of CTLs that 

halves the infected cell 
lifetime 

cells 2.108 Data fitting* 

Iav  CTL avidity threshold 
in the number of 
infected cells 

cells 108 Data fitting* 

EN(0) Initial naive CTL 
number 

cells 2.106 (Murphy, 2011) 

E0L Number of CTLs that 
decreases plat by 50% 

cells 4.106 Data fitting* 

 
* Out of the seven parameters, three (a-dE,	  EN(0),	  dIE) are	  fixed	  and	  cited from the literature, and four	  (dE,	  E0,	  E0L,	  
Iav)	  are fitted to match the four experimental plateaus measured in patients.  As shown in the main text (Figure 4), 
E0, Iav, and E0L are adjusted to fit the measured steady state levels: E = 109 cells (Ogg et al., 1998) (Turnbull et al., 
2009), I = 108 cells (Haase, 1999), and L = 106 cells (Chun et al., 1997).  The 4th fitted parameter dE is adjusted to 
fit L under ART: L = 105 cells (Finzi et al., 1997).  Finally, total cell counts are assumed to be T(0) = b/dT = 2.1011 
for both CD8+ T and CD4+ T cells (Murphy, 2011).  
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EXTENDED EXPERIMENTAL PROCEDURES 
 

Notation remark: For brevity, below we use p and plat interchangeably. 
 
A. One-compartment model (R0

muc < 1) 
 

"Chemical reaction" representation  
 
We first describe the dynamics of initial mucosal infection by incorporating latently infected cells into 
an established stochastic model of early infection (Pearson et al., 2011): 
 

!  
𝑇 

𝑇
!! ∅   

𝑇 + 𝑉
!!! !

𝐼 
𝑇 + 𝑉

!  !
𝐿 

𝐿
!  
𝐼                                                                      (S1) 

  𝐼
!  !! 𝐼 + 𝑉 
𝐼
!!   ∅ 

𝑉
!
∅   

𝐿
!! ∅ 

 
In this simplified model, V denotes the number of free virus particles, I denotes actively infected (virus-
producing) cells, and L represents the number of latently infected cells. Cells become infected by virus 
at a rate k and become latently infected with probability plat and reactivate from latency at a rate r.  
Infected cells produce n viral particles (burst size) and decay at rate 𝑑!, while virus decays at the rate c.  
Target cell dynamics (T) can either be explicitly considered (as above) or represented as a constant T = 
b/dT, when viral loads are small. 
 
Stochastic Gillespie simulation (Fig S2A, B) 
 
The stochastic initial infection model (Eqs S1) was simulated using the Monte-Carlo ‘Gillespie’ 
algorithm  (Gillespie, 1977).  These simulations were implemented via the xSSA package in 
Mathematica™ with the parameters:  R0

muc = 0.1, c = 5/day (Perelson	  et	  al.,	  1996), n = 500 (Zhang	  et	  
al.,	  1999), and k = (cdT/bn)R0

muc.  Parameter values are summarized in Table S1, with simulation results 
shown in Figs. S2 A,B.  
 

Deterministic approximation (ordinary differential equations) (Fig 2A, B) 

We next simulated the dynamics of initial and systemic infection using a deterministic model that 
incorporates proviral latency (Rong and Perelson, 2009a, b; Sedaghat et al., 2007; Sedaghat et al., 2008).  
This deterministic model represents a mean-field approximation to the chemical reaction model in Eqs 
S1 and is represented by the following coupled system of nonlinear ordinary differential equations: 
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	   	   	   (S2)	  

	  
Here, uninfected ‘target’ cells (T) are produced at rate b, decay at rate dT, and can be infected by virus 
particles (V) at rate k.  Target cells are considered because this deterministic model is capable of 
describing the full span of systemic HIV infection and accounts for the depletion of uninfected target 
cells by the virus.  Upon virus infection, target cells become either latently infected cells (L) with 
probability plat or become actively infected virus-producing cells (I) with probability 1 - plat.  Latently 
infected cells decay at the relatively slow rate dL and reactivate into actively infected (virus-producing) 
cells at rate r with actively infected cells decaying at a rate dI.  Actively infected cells produce virus at 
the per-capita ‘burst-size’ n as they decay.  All cell types and viral particles have finite lifetimes.  Target 
cells, actively infected cells, and latently infected cells all decay at relatively slow rates dT, dI, dL, 
respectively, while viral particles decay at a relatively fast rate c.  Parameter values (Table S1) were 
derived from measurements in human patients and are the same for initial and systemic infection periods, 
with one exception: the replenishment rate of uninfected ‘target’ cells (b) is assumed to be much lower 
for the initial infection to account for the lower basic reproduction number R0 = kbn/(cdT) measured 
during the first 5 days of initial infection (Haase, 2011; Li et al., 2005; Miller et al., 2005; Zhang et al., 
1999). We solve Eqs S2 numerically using the ODE15s (stiff) solver in MATLABTM. 
 
 
Infection in the mucosa as a branching process  
 
To obtain the probability of extinction during initial mucosal infection as a function of R0 and the 
infected cell inoculum (I0), we developed an analytic branching process approximation—since 
individual Monte Carlo runs are inefficient for probing extinction probabilities across a broad range of 
(R0, I0) parameter space. 
 
Here we derive the branching process approximation.  Given that the initial inoculum of infected cells in 
the mucosa is modest, Iinoculum < 100 infectious units, the reactivation of latent cells can be neglected 
(since r < 10-3, Table S1).  Thus, the number of actively infected cells in the mucosa, Imuc(t), is 
decoupled from the other two variables: LLT and ILT [i.e., these two are found after Imuc(t) is calculated].  
Since HIV virions are short-lived, c >> dI and dT	   (Perelson et al., 1996), their concentration is 
proportional, as a function of time, to the infected cell number. Excluding viral load as a free variable, 
we consider the random dynamics of infected cells number 𝐼!"#(t) as a branching process (Grimmett 
and Stirzaker, 2001). At p = 0, actively infected cells die at rate dI and leave new infected cells at rate dI 
R0

muc, where R0
muc = k bmuc n/(cd) is the basic reproduction number (number of new cells per old cell). 

The total number of target cells is assumed constant, because viral load is small, and target cells are not 
depleted.  At any p > 0, we have  
 

Uninfected 'target' cells dT
dt

= b
replenishment

 − dTT
natural death
 − kVT

infection


Actively infected cells dI
dt
= (1− plat )kVT

active infection
    −  dI I

death
  + rL

reactivation


Latently infected cells dL
dt

= platkVT
latent infection
  −  dLL

death
  − rL

reactivation


Virus dV
dt

= ndI I
production
 − cV

clearance
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𝜕𝑃 𝐼!"#   , 𝑡
𝜕𝑡 = 𝐼!"# − 1 1− 𝑝   𝑅!!"#𝑃 𝐼!"# − 1  , 𝑡  

+ 𝐼!"# + 1 𝑃 𝐼!"# + 1  , 𝑡 − 𝐼!"# 1+ 1− 𝑝   𝑅!!"# 𝑃 𝐼!"#   , 𝑡  
 
where 𝑃(𝐼!"#   , 𝑡) is the probability of having 𝐼!"# = 0, 1, 2, 3, … actively infected cells at time t.  The 
equation was solved numerically using MatlabTM with the initial condition: 
 

𝑃 𝐼!"# , 0 =
1− 𝑝 𝐼!  

!!"#

𝐼!"#!
𝑒! !!! !! 

 
We can also add latent cells to this process neglecting their reactivation (see above). We introduce the 
probability G(L ,t) of having 𝐿 = 0, 1, 2, 3,… latent cells at time t averaged over all possible random 
trajectories 𝑃(𝐼!"#   , 𝑡). The averaging is allowed because the random process for active cells does not 
depend on that for latent cells and can be calculated first (see previous paragraph). We get: 
 

𝜕𝐺 𝐿  , 𝑡
𝜕𝑡 = 𝐺 𝐿 − 1  , 𝑡 − 𝐺 𝐿, 𝑡 𝑝𝐼!"#   𝑃 𝐼!"#   , 𝑡

!

!!"#!!

 

 
The initial condition is:  
 

𝐺 𝐿, 0 = !  !!   !

!!
𝑒!!  !!   . 

 
The probability of having zero latent cells at time t, 𝐺 0, 𝑡 , is readily derived from these equations as:  
 

𝐺 0, 𝑡 = 𝑒!!  !!𝑒!! !"! !!"#  ! !!"#  ,!!
!!"#!!

!
!  

 
 
Extinction in the mucosa: branching process (Fig S2C, D) 
 
The probability of active-cell extinction at time t [condition  𝐼!"# 𝑡   = 0] is given by 𝑃 0, 𝑡  calculated 
numerically as explained in the previous subsection. The probability of complete extinction at time t, 
including latent cells [condition  𝐼!"# 𝑡   = 0 & 𝐿 𝑡 = 0], is given by the product 𝑃 0, 𝑡 𝐺 0, 𝑡 .  This 
extinction probability is plotted in Figs S2C, D. 
 
Extinction and surviving cells in the mucosa: analytic Wright-Fisher process (Fig S2E) 
 
The simplest method to calculate the average number of latent cells surviving mucosal infection (Fig S2) 
is to use a discrete-time Markov process, which represents a generalized version of Wright-Fisher 
process in which the number of cells is not fixed, as in the classical version (Nielsen and Slatkin, 2013), 
but changes with time. Assuming a modest inoculum in mucosa, I0 < 100 infectious units, the 
reactivation of latent cells in mucosa is again neglected (rate r < 10-3, Table S1). The dynamics of 
actively infected and latently infected cells in the mucosa are then derived from the recursive relations: 
 

𝐼 0 = (1− 𝑝)𝐼!      

𝐼 𝑡 = 𝑅!!"#   1− 𝑝 𝐼 𝑡 − 1 ,      𝑡 = 1, 2, 3…  
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𝐿! 𝑡 = 𝑅!!"#  𝑝𝐼 𝑡 − 1   

𝐿 𝑡 = 𝑝𝐼! + 𝐿! 𝑖
!

!!!

 

where the bar denotes averaging over realizations, and 𝐿! 𝑡   is the fraction of latent cells born in 
generation t. The initial latent cells, 𝐿 0 = 𝑝𝐼!"#$%&%',  come directly from the infecting virus. Iterating 
these relations, one gets 
 

𝐼 𝑡 = 𝐼! 1− 𝑝 𝑎! 
  

𝐿 𝑡 = 𝐼!  𝑝     1+ 𝑎
1− 𝑎!!!

1− 𝑎                            

                         
𝑎 ≡ 𝑅!!"# 1− 𝑝     

  
From these expressions we obtain the number of surviving infected cells 𝐼 𝑡 + 𝐿 𝑡  (Fig S2E). In the 
long run, the average number of cells that survive to start systemic infection in the lymphoid tissue is the 
output of a geometric series: 
 

𝐿!"!#
!!!! = 𝐼!

!
!!!

                                                                                                                                                (S3) 
  

If 𝑅!!"#<<1, then a is small.  As a result, we obtain the main text assumption (and the simulation result 
of Figure S2E) that 𝐿!"!#

!!!! ≈ 𝐼!𝑝.   
 
An intuitive way to understand these equations is to note that in the first generation of mucosal infection, 
the number of latently infected cells produced is plat I0.  In each subsequent generation, the production of 
latently infected cells decreases geometrically by the multiplicative factor (1-plat)R0

muc, because new 
latently infected cells only emerge from actively infected cells that managed to replicate in the previous 
generation.  Given R0

muc <<1, subsequent mucosal generations contribute increasingly small amounts to 
the infected cell population.  For example, when R0

muc = 0.25 and plat=0.5, 86% of latently infected cells 
are generated during the first mucosal generation.  Thus, the number of infected cells that survive 
mucosal infection is ≈platI0.   
 
Also, we can estimate the active infection extinction time, tact_extinct, from the condition 𝐼 𝑡!"#_!"#$%&# =
𝐼!"#$%%,  where the extinction threshold, 𝐼!"#$%%  ~ 0.3 cells, is adjusted to match the Gillespie simulation 
results (Figs. S2A,B): 
 

𝑡!"#  !"#$%&# =
!"# !!

!!"#$%%
!"# !!! !!!"#   

 
We can also obtain the time when the total number of infected cells is extinct from 𝐼 𝑡 + 𝐿 𝑡 = 𝐼!"#$%%. 
 

𝑡!""  !"#$%&# =
log

  
!!"#$%%
!!

  ! !
!!!

!!! !!!
!!!

log𝑎  



	   9	  

 
If p is sufficiently large, this time is infinite, because the number of latent cells surviving infection 
exceeds 𝐼!"#$%%.  
 
 
B. Two-compartment model (R0

muc < 1 and R0
LT > 1) 

 
Coupled compartments: Wright-Fisher simulation (Fig S2F-I) 

 
To illustrate the time delay between viral inoculation and systemic viral expansion in the lymphoid 
tissue (LT), we simulated a stochastic coupled process with explicit cell transfer between the two 
compartments.  In contrast to the simulations in Fig S2A-B, which consider only initial mucosal 
infection, here we include both initial infection in the mucosa and systemic infection across the 
lymphoid tissue in a two-compartment model.  
 
In particular, the two-compartment model tracks the first 2 to 3 weeks post-transmission, when the virus 
levels in the LT are still low, so that target cells, T(t), in the LT can be assumed to be at their pre-
infection level.  Viral loads in initial and systemic infections are not explicitly modeled but their 
parameters are absorbed into R0

muc and R0
LT, respectively.  This standard approximation is based on the 

short lifetimes of virions (Perelson et al., 1996), which results in the virus load varying in time 
proportionally to the infected cell number.  Thus, the model (Eqs. S1 or S2) can be simplified to exclude 
the variables T(t) and V(t) and keep plat, r, and R0

muc and R0
LT (Table S1) as the only input parameters. 

The simplest two-compartment version with discrete generations has the form: 
 

       

Imuc and ILT represent the numbers of actively infected (virus-producing) cells in initial and systemic 
infection, respectively, while LLT represents the number of latently infected cells during systemic 
infection.  Cells are latently infected with probability plat, and actively infected cells remain in their 
respective compartments and die. Time t =1, 2, 3, … is discrete and expressed in units of the infected-
cell lifetime, 1/dI = 1 day (Table S1), i.e., generations of actively infected cells are non-overlapping. 
This represents a generalized version of the Wright-Fisher process (unlike in the classical version, total 
subpopulations of cells are not fixed) (Nielsen and Slatkin, 2013).  
  
Latently infected cells are resting memory CD4+ T cells [note that the opposite is not true: cells with 
resting markers can be actively infected as well presumably after relaxing into resting state (Zhang et al., 
1999)], which can circulate freely between local mucosa and LT (Murphy, 2011). Hence, once formed 
in the mucosa, latent cells gain access to LT. The number of reactivating latent cells is Lreact = 
Poisson[r(t) LLT(t)] where r(t) is a time-dependent parameter describing the reactivation rate. We use an 
r(t) that generates a 5-7 delay (Haase, 2011). Specifically, we assume that rare activation of latent cells 
occurs at a maximal rate r (Table S1) during initial mucosal infection (e.g., via T cell receptor when 
exposed to macrophages and dendritic cells, which express HIV peptides in MHC-II context and migrate 
from the mucosal infection site (Murphy, 2011)). After that, r(t) was taken 0, for the short-term 
dynamics of several days [actually, it has finite but much smaller value < 10-3 which causes eventual cell 

Imuc (t +1) = Poisson (1− plat )R0
mucImuc (t)⎡⎣ ⎤⎦

LLT (t +1) = LLT (t)+ Poisson platR0
mucImuc (t)+ platR0

LTILT (t)⎡⎣ ⎤⎦ − Lreact

ILT (t +1) = Poisson (1− plat )R0
LTILT (t)⎡⎣ ⎤⎦ + Lreact
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reactivation even after years of therapy	  (Hill	  et	  al.,	  2014;	  Rouzine	  et	  al.,	  2014), Table S1]. The general 
case with transfer of free virus or actively infected cells is considered separately below (Section E). 
 
This simulation also explains the apparent conflict between the random nature of latent cell activation 
and the well-timed peak of viremia, which occurs at 10-12 days post transmission.  According to our 
simulations (Fig S2F), although latent cells can be reactivated at any time with the same probability 
during the initial infection period, the cells that get activated later have the largest chance to survive 
until the influx of target cells occurs (R0 > 1). Therefore, expansion of latent cells after transfer (red lines 
in Fig S2F) is almost exactly synced to the extinction of the initial active infection. 
 
The coupled Wright-Fisher model was simulated in Matlab™ using the “broken-stick” method 
(Macarthur, 1957) to generate Poisson-distributed random numbers around their respective average 
values (Fig S1). Parameter values are given in Table S1.  

 

Uncoupled compartments: deterministic approximation 

To calculate the dependence of pestab and I0 on p in the deterministic approximation, we uncouple the 
mucosal and lymphoid sub-models and use Eqs S2 twice: once for the mucosal compartment in which 
R0

muc
 < 1 (initial infection) and a second time for the lymphoid compartment in which R0

LT > 1 (systemic 
infection).  The mucosal model enables us to calculate the number of latently infected cells transferred, 
while the systemic infection model enables us to calculate the viral load and inoculation dose transferred 
to the next patient (see the main text for the references).  This uncoupled approach does not explicitly 
consider the time delay (~ 6 days) between the start of mucosal and systemic infection (see a subsection 
below).  We assume that the initial virus load in mucosa V(0) which corresponds to an inoculum of I0 = 
I(1day) + L(1day) = 10-100 initially infected cells (see Section D). For the lymphoid tissue (LT), we 
assume that a single reactivated cell seeds systemic infection: I(0) = 1. Other state variables are initially 
set to 0. We solved Eqs S2 numerically using ODE15s solver in the standard MATLAB package (Fig 2). 
 

Net transmission rate as a function of latency probability (p): numeric and analytic (Fig 2D) 
 
We assume that the average inoculum per unprotected sexual encounter 𝐼! is proportional to the average 
virus load V(t)  
 

𝐼! = 𝑐𝑜𝑛𝑠𝑡(𝑝) !
!!"#

𝑑𝑡  𝑉 𝑡!!"#
!

     
(S4)  

 
where const(p) denotes a factor that does not depend on p, and V(t) is calculated numerically from Eqs. 
S2. In this model, the peak and the steady state viremia are comparable, but the steady state is much 
longer (10 years on average) and hence dominates the integral in Eq. S4. 
 
The net transmission probability ptransmission can be approximated by 
 

𝑝!"#$%&'%%!"# ≈ 𝑝!"#$%𝐼!                                                  (S5) 
 
because ptransmission << 1 (Fraser et al., 2007). Here 𝑝!"#$% = (𝐿!"!#!!!!/𝐼!)  𝑝!"#$%   is the probability of 
infection transfer to LT, including the fraction of latent cells formed in mucosa (𝐿!"!#!!!!/𝐼!)  and the 
reactivation probability of a cell, 𝑝!"#$%. Assuming that reactivation probability does not depend on p 
(we relax this assumption for the coupled model, see below), and R0

muc << 1, 𝑝!"#$% is proportional to 



	   11	  

the final level  of  latent  cells  formed  in mucosa. Calculating V(t)  numerically from Eqs S2, normalized 
ptransmission (p) from Eqs S4 and S5 is shown in Fig 2. 
 
We can also obtain ptransmission (p) analytically, as we do in the main text and repeat here. From Eqs S2, 
assuming r << dL (see Section E), steady-state viremia is given by V = (dT/k) [(1-p) R0

LT − 1], where R0
LT 

= bkn/dc. Hence, from Eq S1, we arrive at   
 

I0 p( ) ≈ const ⋅ 1− p( )RLT
0 −1⎡⎣ ⎤⎦       (S6) 

  
 

Assuming R0
muc << 1, the final level   of   latent   cells   formed   in mucosa is approximately linearly 

proportional to p (Eq. S3). (Finite value R0
muc creates a correction in pestab; e.g., R0

muc = 0.25 increases it 
by ~14%.) Hence, from	  Eq.	  S5,	   ptransmission p( ) 	  is the quadratic dependence on p 
 

ptransmission p( ) ≈ const ⋅p 1− p( )RLT
0 −1⎡⎣ ⎤⎦       (S7) 

  
 

which is virtually identical to the numeric dependence (Fig 2). Thus, the latency probability has 
optimum at  
 

p = popt = (1− 1/	  RLT
0 )	  /2	  	  	  	   	   	  	  	  	  	  	  	  	   	   	   (S8) 

 
As we show below in Section E, same result for ptransmission p( ) follows approximately when transmission 
is dominated by the acute phase of infection and the model includes the immune response against HIV 
and in some other cases as well. In general, the dependence of transmission rate on p is surprisingly 
robust to model variations (Section E). 
 
 
C. Extended model of systemic infection in lymphoid tissue (R0

LT > 1) including the adaptive 
immune response 
 
The basic model (Fig 1B, Fig 2) is the simplest model in the literature that explores the idea of latency-
dependent transmission. It predicts the high early incidence of latency observed in cell culture and 3 
days postinfection in experimental animals. However, the simple model also has limitations: for the 
ensuing chronic infection, it predicts an unrealistically high latent compartment. To interpret the low 
reservoir size observed in chronic infection, we introduce an extended model including immune 
response. Importantly, the central result of a high popt(0) is robust to this and other model changes 
(Section E). 
 
The critical importance of the cytotoxic immune response for the HIV-1 dynamics is evident from 
experiments on CD8 T-cell depletion in monkeys (Jin et al., 1999; Schmitz et al., 1999) and rapid 
genetic variation in CD8 T-cell epitopes.  To test the robustness of the results to a model, and to 
introduce the time variation of latency parameters in vivo, we expanded the standard model to include an 
antigen-specific CD8 T-cell response (Davenport et al., 2004; De Boer, 2007; De Boer and Perelson, 
1998), as follows:  
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Uninfected target cells dT
dt

= b
replenishment

 − dTT
naturaldeath
 − kVT

infection


Infected cells in eclipse phase dIE
dt

= (1− p)kVT
active infection
   − dIEIE

eclipse phase ends
 + rL

reactivation


Actively infected cells dI
dt

= dIEIE
from eclipse phase
 − dI (1+E /E0 )I

death
  

Latently infected cells dL
dt

= pkVT
latent infection
 − dLL

death 
 − rL

reactivation


Free virus dV
dt

= ndPI
production
 − cV

clearance


Effector immune cells dE
dt

= aENI / (I + Iav )
from naive cells
   + aEI / (I + Iav )

antigen-induced proliferation
   − dEE

death


Naive precursors of immune cells dEN
dt

= −aENI / (I + Iav )
activation by antigen
  

	   	  

(S9) 

 
All new parameters listed in the extended immune model above are described in Table S2 (Table S1 
describes the parameters inherited from the Basic Model).  Compared to the basic model (Eqs. S2), 
which assumes that the death rate of virus-producing cells dI (caused by viral products) is constant, in 
the extended model, effector CD8 T cells (E) can also kill these cells (the term E/E0 in line 3 in Eqs. S9). 
Also added are two new equations, describing the activation of naive CD8 T cells (EN) by infected cells 
and the expansion and the death of effector cells. [As is usually done with models including immune 
clearance, we also included an eclipse phase, IE, to limit the decay rate of actively infected cells at finite 
value less than 1/day and thus prevent an artifact of their precipitous drop and giant oscillations (De 
Boer, 2007; Rouzine et al., 2006; Sergeev et al., 2010b).]  Eqs S9 represent one of the simplest models 
of the CD8 T cells response. More complex models involve helper T cell dependent activation (Sergeev 
et al., 2010a; Sergeev et al., 2010b)	  or multiple CTL clones recognizing different epitopes (Althaus and 
De Boer, 2008). Yet, even this simple model is sufficient for our aim, because the effects of the CD8 
response are sufficient to capture the robustness of the results (next subsection). Further attempts at 
model simplification produce unobserved effects on dynamics (Fig S3B, C). 
 
In Eqs. S9, we postulate time variation of latency parameters driven by cytokine activation of target cells 
T(t) and latently infected cells L(t) by immune cells E(t), as follows (Fig. 3) 
 

p(E) = p(0)E0L/(E0L+E),      r (E) =  r(0) + dI E/(E0L+E)  (S10) 
 
Here E = E0L is the characteristic number of immune cells at which half of infected cells receive a 
cytokine signal above an activation threshold, and the initial values p(0) ~ 0.5 (Eq S8) and r(0) = 10-4-
10-3 (Table S1) correspond to the absence of the HIV-specific immune response.  
 
The dynamics of cell compartments calculated from Eqs. S9 and S10 is shown in Fig. 4A. Model 
parameters are described in Table S2 and Section D below. In the beginning of systemic expansion, p = 
p(0) ~ 0.5 and r = r(0) << 1 (Fig 4B), so that the latent cell count rises to high levels. The immune 
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response after the viremia peak activates target cells, which increases r and decreases p by several orders 
of magnitude and thus depletes the latent reservoir. The latently infected cell subpopulation (L) saturates 
at a low level, determined by the dynamic balance between new infections and activation of latently 
infected cells (Fig 4A). Latently infected cells (i.e., cells in the “off” state of virus transcription) are 
being constantly produced by new infections and immediately activated back to the “on” state (I). Thus, 
the size of latent compartment remains dynamically coupled to the actively infected compartment. 
 
The onset of ART suppresses new infections and results in a decline of all infected cells, both virus-
producing and latent because they are coupled dynamically (Fig 4A).  The decline of the latent reservoir 
occurs at the rate of cell activation, r(t). At the onset of ART, this rate is very high, and latent 
compartment decays very rapidly. Because the depletion of antigen causes immune cell population to 
contract (E), the reactivation rate of latently infected cells r(t) soon returns back to its low background 
level r(0) (Table S1). Therefore, any further decay of the reservoir occurs extremely slowly (Fig 4A).   
 
D.   Model parameters and parameter sensitivity analysis 

 
HIV demographics in early mucosa (R0

muc < 1)  
 
The assumption R0

muc < 1 for the initial entry site of HIV is critical. That assumption--and our entire 
model-- is built on the facts described in Haase, 2011 (Miller et al 2005, Li et al 2009).  These results 
and the supporting data by in situ hybridization are consistent with our assumption that reproductive 
number in mucosa (R0) is below 1 through day 5 of infection. Following day 6 and on, a local RNA 
expansion has been observed, roughly synchronous with the RNA expansion in genital and distal lymph 
nodes, which demonstrates that R0 > 1 from that time on (Miller et al 2005, Fig 1A-C). Thus, our target-
poor R0

LT < 1 compartment (termed "mucosa" for brevity) includes early mucosa, while our target-rich 
R0

LT > 1 compartment (termed "lymphoid tissue") (Fig 1B) includes late mucosa, genital and distal 
lymph nodes, GALT, spleen, and other major organs of HIV replication. 
Miller et al (2005) inoculated female macaques with a 1ml viral dose with the high concentration of 109 
RNA copy/ml (during a typical transmission, it is  ~ 105 RNA copy/ml sperm). The authors failed to 
detect any consistent evidence for active infection in the interval 0-5 days post-infection (see their Fig 
1A). No SIV RNA was consistently detected in vagina or endocervix until day 6 (except for residual 
inoculum on day 1). Using a more sensitive assay of in situ hybridization capable of detecting single 
SIV RNA+ cells, a founder population of 40-50 actively infected (SIV RNA+) cells was discovered in a 
single animal, out of 14 total animals necropsied before day 6 (Miller et al 2005, Fig 3 and the text).  A 
more careful and broad search (Li et al 2009) discovered such founder populations (on day 4) in 9 
animals; unfortunately, these authors did not specify the total number of animals scanned, so that we 
cannot use these data. We emphasize that natural viral transmission occurs at 10,000-fold lower viral 
concentrations, making founder populations even less frequent. Finally, we conclude that active viral 
replication is probably extinct in this time window, and, therefore, the reproduction ratio during this time 
R0 is below 1. 
 
  



	   14	  

Estimate of I0 from the count of HIV DNA+ cells in early mucosa 
Thus, data show no active viral replication (no SIV RNA+ cells) in most animals until day 6. At the 
same time, recent data demonstrate the existence of a large latent compartment. The observed frequency 
of SIV DNA+ cells inside a mesenteric lymph node on day 3 postinfection is 200 per 106 CD4+ cells 
(Whitney et al, 2014, see their Fig S5). From this value, assuming 300 CD4 cell/µg (Zhang	  et	  al.,	  1998) 
in a 2g node [a node weighs 10 mg in a mouse (Kim	   et	   al.,	   2008)	  whose body weight is 200-fold 
smaller than that of a rhesus macaque], we arrive at the latent reservoir of 𝐿!"!#

!!!!
 = 105 SIV DNA+ cells 

(assuming that all DNA+ cells are latently infected and do not harbor defective proviruses). These were 
inoculated by high dose of virus, 1ml supernatant with the concentration 109 SIV RNA/ml. For the 104-
fold less concentrated virus during typical transmission, we estimate 𝐿!"!#

!!!!~ 10 DNA+ cells, which 
corresponds to inoculum I0 = 20-30 if p = 0.5 chosen in our simulations (Figs 2 and S2). 
 
Parameter choice and sensitivity in target-rich compartment (R0

LT > 1) 
 
For the basic model in Figs 1 and 2, we used standard parameters from the literature, as cited in Table 
S1. Importantly, our predicted result for popt is affected by only one composite parameter, R0

LT. 
Parameter sensitivity analysis (Fig. 2) to verify robustness of the optimum in net-transmission rate was 
carried out by varying all model parameters via R0

LT.  R0
LT was varied within the measured range in 

patients or in rhesus macaques (R0
LT = 5 to R0

LT = 20) (Nowak et al., 1997).  Other parameters estimated 
from the literature (such as death rates dT, dI,	   see	  Table	  S1)	  affect the dynamics of the acute viremia 
peak, but not popt. 
	  
Definition of parameters is given in Table S2. Out of the seven parameters four	   (dE,	  E0,	  E0L,	   I0)	   are 
adjusted to fit the four experimental plateaus in patients (Fig 4), and three are	  fixed	  and	  cited from the 
literature. Specifically, E0, I0, and E0L are estimated from the predicted steady-state levels of E, I, and L, 
compared to their experimental estimates (Fig. 4): E = 109 cells (Ogg et al., 1998) (Turnbull et al., 2009), 
I = 108 cells (Haase, 1999), and L = 106 cells (Chun et al., 1997).  dE is estimated to fit L under ART: L = 
105 cells (Finzi et al., 1997). The total cell counts are assumed T(0) = b/dT = 2.1011 for both CD8+ T and 
CD4+ T cells (Murphy, 2011).  
	  
 
	  
E. Robustness to the variations of the individual-host model and epidemiological factors 
 
To test the robustness of the popt ~ 0.5 prediction to changes in model structure, we modified the model 
architecture in four ways: (i) extended the model to include an immune response, (ii) altered the relative 
contribution of acute versus chronic stages to transmission potential, (iii) examined a non-linear 
dependence of the transmission rate on viremia, and (iv) altered the role of actively producing cells in 
the transfer between mucosa and the lymph.  As we show below, although viral dynamics is generally 
sensitive to many factors and parameters, and viral transmission may occur in different phases of HIV, 
the normalized dependence of the transmission probability on p is surprisingly robust (or skewed 
towards even larger p). As long as model parameters stay within their order of magnitude in Table S1, 
all the variation occurs within the constant prefactor in Eq. S7 and does not alter the dependence on p(0).  
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Limitations of the basic model (Eqs S2): high latent cells and sensitivity to r/dL  
 
In the main text derivation, we assumed r << dL. Actually, the existing estimates of r and dL are within 
the same range, so that both r < dL and r > dL are possible (Table S1). In the opposite extreme scenario, r 
>> dL, the virus load increases by a factor of 1-p (Eqs S2): 
 

𝑉 =
𝑑!
𝑘 𝑅!!"

1− 𝑝 + !
!!

1+ !
!!

− 1  

 
Thus, the virus load in steady state V is sensitive to r/dL even when both r and dL are very small, < 10-3. 
Importantly, the optimal value popt stays large regardless. In the case r >> dL, Eq S6 for I0(p) loses factor 
1-p before R0

LT,  so that I0(p) calculated in the basic model becomes independent on p. As a result of the 
change, the optimum value for the initial popt becomes even higher than 0.5 (Eq S8). Thus, popt is large 
regardless of the ratio r/dL. 
 
The sensitivity of V to r/dL is an artifact of the basic model (Eqs S2), which, as it is well known, cannot 
be used to predict the peak to steady state ratio. Another artifact is a very high level predicted for latent 
cells L. The steady state values for T and L are: 
 

𝑇 =   
𝑏!"
𝑅!!"𝑑!

1+ !
!!

1− 𝑝 + !
!!

 

𝐿 =
𝑏!"𝑝

(𝑟 + 𝑑!)𝑅!!"
𝑝 𝑅!!" −

1+ !
!!

1− 𝑝 + !
!!

 

 
Therefore, at p ~ 0.5, the ratio L/T is as large as 𝑅!!"𝑑! /(𝑑! + 𝑟) ~ 103-104 (see parameters in Table S1).  
 
The unrealistically high L (and V) predicted by the basic model (Eqs S2) indicate that the basic model, 
although capable of interpreting high levels of latency in early infection, is not sufficient for interpreting 
low levels of latency (and other parameters) in chronic infection (Fig 4A), and must be extended to a 
more realistic model including an immune response (Eqs. S9-S10). Importantly, as we next show, the 
high initial latency probability popt(0) ~ 0.5 is robust to this (and other) model modifications. 
 
 
Factors affecting the transmitted dose  
 
So far, we have used Eq. S4, for I0 assuming linear dependence on average virus load. The actual 
number of infected units transmitted to an average individual is a more complicated quantity that 
depends on epidemiological factors, such as a risk group (frequency of sex contacts) and variation of 
host’s infectivity with the stage of infection (Baggaley et al., 2006). For our aim of estimating popt, we 
consider only high-risk groups of hosts, which are expected to dominate the HIV spread and evolution. 
Further, HIV infection can be split into a highly infectious acute stage including viremia peak (~ 1-2 
months) and a less infectious but much longer chronic stage (~100 months). In high-risk groups of 
humans, half of transmissions occur early during the acute stage (Fraser et al., 2007; Hollingsworth et al., 
2008; Lewis et al., 2008; Wawer et al., 2005);	  we	  expect	  a	  similar	  contribution	  from	  the	  acute	  phase	  
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in a natural host population. Note that, since a natural host does not develop AIDS, the highly infectious 
AIDS stage is absent. 
 
 
Basic model and acute-stage transmission 
 
Consider now the contribution of the acute phase to transmission (the time integral in Eq. S4) as a 
function of p. The initial expansion slope dlnI(t)/dt is equal to the initial reproduction number (1-p)R0

LT 
(which is smaller than the raw value in the absence of latency (R0

LT) due to diversion of infected cells 
from active viral production). As the population of infected cells expands, uninfected target cells (T) are 
depleted proportional to the viral load (Fig S3A, blue dashed line). The expansion is checked and the 
viral load reaches its maximum when the reproduction ratio is decreased from the initial value (1-p)R0

LT 
to 1 due to depletion of T.  Thus, to stop virus expansion and reach the peak, the target cells must be 
depleted by a factor of (1-p)R0

LT. Since depletion is proportional to the virus load, the virus peak height 
must be proportional to 1–p.  Using this proportionality in Eq. S4 contributed mostly from the peak, we 
again arrive at Eq. S6 for I0, and at the same result for popt as for the chronic-phase transmission (Eq S8). 
 
Immune response and acute-stage transmission 
 
The presence of CD8 T cells in the extended model (given by Eqs. S9-S10), which become prominent 
after the viremia peak, decreases the steady-state virus load further than in the base model given by Eqs. 
S2 (Fig S3A). Yet, the region of the viremia peak (which determines I0 in acute-stage transfer from Eq 
S4) do not change much.  As in the absence of the immune response, the height of the infection peak is 
limited by the depletion of target cells, which occurs before the immune cells rise to prominence. The 
shape of the viremia peak near its maximum is also fairly robust. Indeed, the decay slope after the 
maximum is determined by lifetime of the eclipse phase cells (IE in Eqs. S9) (Klenerman et al., 1996a; 
Rouzine et al., 2006).  Assuming, again, the dominant role of the acute stage in transmission, we predict 
almost the same result for the transmission rate as a function of p as for the model without an immune 
response. This is confirmed by numerical simulation. To obtain the result shown in Fig 4B, we compute 
Eqs. S9 and S10 numerically and, assuming that most transmission occurs during the viremia peak, 
evaluate the time integral in Eq. S4 over the interval of 20 days centered at the peak. Indeed, numerical 
results for ptransmission(p) in Fig 4B (with immune response) are similar to that in Fig 2D (no immune 
response). 
 
Immune response and mixed acute-chronic-stage transmission 
 
We assume now that 50% transmission events take place during the peak and 50% during the chronic 
phase (Fraser et al., 2007). We also assume that p [pre-immune-response value 𝑝 ≡ 𝑝(0)] is at the 
evolved optimum, popt. The immune response is present (Eqs. S9-S10). While the peak part of the 
integral in Eq. S4 is still proportional to 1-p, the steady-state part does not depend on p at all, because 
virus is pinned near the CTL avidity threshold, I ~ I0.  Hence, the average inoculum is given by the sum 
of the peak part and the steady state part: 
 

     (S6) 
 
The first term due to peak is from Eq. S6 and the second term due to steady state (which is constant in p) 
is calculated from the condition that both terms are equal at p = popt. As one derives easily, the best net 
transmission rate given by the product p.Iinoculum (p) will be attained at p = popt = (2/3)(1-1/R0

LT), larger 

R0
LT (1− p)−1⎡⎣ ⎤⎦ 2 + R0

LT (1− popt )−1⎡⎣ ⎤⎦ 2
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than the main text result   popt = (1/2)(1-1/R0
LT). Thus, inclusion of the two infection stages into 

transmission in the presence of the immune response will only increase the optimum above ~ 0.5. Once 
again, the prediction of a large optimal latency probability in the beginning of infection p = p(0) > 0.5 
remains.   
 
Non-linear dependence of the transmission rate on the viremia  
 
Another possible factor is that the probability of transmission is not linear in the viral and infected cell 
counts, as is assumed in Eq. S4, but saturates at high viremia levels (as in HIV-status discordant 
couples) (Fraser et al., 2007). Transmission rates are higher in high-risk groups of individuals (May, 
2004). In any case, saturation of the transmission rate would also only increase popt, because a slower-
than-linear increase of the transmission rate with viremia would translate to a slower decrease of the 
transmission rate with p, as compared to the basic model result (Eq S7).  This would reduce the cost of 
latency.  Hence, again, popt will only increase.  Thus, as long as we abide by the central hypothesis of the 
present work that latently infected cells seed systemic HIV infections, the prediction of a large optimal p 
remains. Now we have to verify what happens if we relax the central hypothesis. 
 
Transmission in the presence of non-latent virus transfer (Fig 2E, Fig S2J) 
 
Before we focused on the case when only latent cells can seed systemic infections. Now we relax the 
central hypothesis and assume that the viral progeny of actively infecting cells (including CD4 T cells 
and dendritic cells) can also seed systemic infections. In this case, the generalized expression for the 
effective transmission rate takes a form (both for the basic model and for the extended immune response 
model): 
 

                                                                 𝑝!"#$%&'%%'($ = 𝑝!"#$%  𝐼!                               
(S5') 

𝐼!(𝑝) =   𝑐𝑜𝑛𝑠𝑡  (𝑝) 1− 𝑝 − !
!!!"

,    (S6') 
  𝑝!"#$%(𝑝) = 𝐶𝑜𝑛𝑠𝑡(𝑝)   1− 𝑝   𝑓!"# + 1− 𝑓!"# 𝑝     (S11) 

 
Here p is the pre-immune response latency probability, 𝑝 ≡ 𝑝(0).   The new parameter 𝑓!"# is defined to 
be the fraction of systemic infections due to non-latent routes when p = 0.5.  The new establishment 
probability pestab(p) in Eq. S5 includes the probability that an actively infected cell seeds systemic 
infection (proportional to the probability of active infection 1− 𝑝).    Notably, the right-hand side of Eq. 
S11 is just one parameterization—it can more generally be re-parameterized in the linear form: A+Bp. 
 
At a fixed  𝑓!"#, we then calculate the new optimum in p 
 

𝑝!"# =
!
!
1− !

!!!"
− !!"#

!!!!!"#
      (S12) 

 
and note it to be less than the result for 𝑝!"#  obtained at fact = 0. Eq. S12 is valid for fact ≤ (1-
1/R0LT)/[1+2(1-1/R0LT)] to ensure popt ≥ 0. 
 
Critically, the predicted and experimentally relevant fraction of active-cell transfer denoted 𝑓!"!#$%  is at 
p = popt . 
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𝑓!"!#$% =
!!!!"# !!"#

!!!!"# !!"#!!!"# !!!!"#
     (S13) 

 
which is obtained as the relative weight of the first term in Eq. S11. It is larger than the raw value 𝑓!"#. 
As 𝑓!"#  increases to  ≈ !

!
, the value of popt vanishes, and transfer switches 100% to the active-cell 

component, 𝑓!"!#$%=1. Until then, the transfer is mixed, 𝑓!"!#$% < 1, and latency probability has non-zero 
optimum. For example, for 90% and 10% split of the transmission role between active and latent cells, 
we have popt ~ 0.05.  Thus, for latency to become useless to the virus (i.e., popt = 0), actively infected 
cells (or infected dendritic cells) must completely dominate the seeding of systemic infection.  
Otherwise, the possibility of latency is beneficial to the virus. 

 

Dependence of establishment probability (pestab) and reactivation probability (preact) on plat (Fig S2) 
 
In the derivation of ptransmission(p) of the main text, we assumed that the probability of reactivation of a 
latent cell in LT (preact) does not depend on the probability of latency, p  (Fig. 2C).  This is a natural 
assumption for the basic decoupled ODE model on which this derivation is based (Eqs S2, Fig. 2), 
which does not include the rate of reactivation of latent cells explicitly (the initial condition in the LT is 
one reactivated cell).  
 
To explicitly test the case in which preact depends on p, we also conducted a Wright-Fisher simulation of 
the stochastic coupled model described above in Section B.  In this coupled simulation, the value of preact 
decreases with p by 60% from its maximum value at p = 0 (Fig S2G). The reason for the decrease is our 
assumption that activation of latent cells occurs during active mucosal infection; as p increases, active 
infection starts at lower levels, and becomes extinct faster, shrinking the duration of activation.  
Critically, even with this extreme assumption, popt only changes from 0.45 (Fig 2D) to 0.35 (Fig S2H).  
Thus, the key result that popt is large remains robust. 
 
The peak of latent cells is sensitive to the details of latency control by the immune response 
 
The size of the peak of latent cells in acute infection in the LT [the purple curve L(t) in Fig. 5A] is very 
sensitive to the details and parameters through which CD8+ T cells control latently infected cells (these 
parameters are currently determined by Eqs S10). Specifically, the sensitive parameters include: (i) the 
minimal possible value of p(E) (currently, set to 0), (ii) the maximum value of r(E) (currently, set to dI = 
1/day), (iii) the characteristic level of E = E0L, at which CD8 T cells reactivate latent cells and decrease 
p(E) (currently E0L = 4.106 cells, but it may be much lower), and (iv) the heterogeneity of the latent cell 
population due to variation in the HIV gene integration site (Dar	  et	  al.,	  2012),	  which includes a fraction 
of latent cells resisting activation (Ho	  et	  al.,	  2013) (currently not included). Data for these details are 
currently incomplete or absent. Therefore, at this time, we cannot make a quantitative prediction 
regarding the size (or even the existence) of the L(t) peak during acute infection.  
  
Simplified immune models fail to predict the realistic viral dynamics (Fig S3B-D)  
 
To test whether the extended immune model (Eqs S9, S10) could be simplified further, we investigated 
two representative model reductions: 
 
No immune eclipse cells. In the first simplified model (Fig 3B,C), we eliminated cells in the eclipse 
phase, IE, replacing the first 3 equations in Eqs S9 with 2 equations: 
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Uninfected target cells dT
dt

= b
replenishment

 − dTT
naturaldeath
 − kVT

infection


Actively infected cells dI
dt

= kVT
infection
 − dI (1+E /E0 )I

death
  

 

 
Numerical simulations of this simplified model show a precipitous ~1 log drop of infected cells and 
viremia in less than 1 day at the onset of ART (Figs. S3B, C).  In contrast, in patients, viremia decays at 
the rate of ~1/day (see Fig. 4A, blowup). 
 
No target cell depletion. In the second simplified version (Fig. S3D), we neglected the depletion of 
target cells. The first equation in Eqs S9 was eliminated, and T was fixed at its predicted value in 
uninfected patients: T = b/dT. Numerical simulations show a giant peak of infected cells during acute 
infection overshooting the uninfected T level and strong oscillations (Fig. S3D). These features are not 
observed in patients or in experimental animals who show dynamics similar to those in Figure 4A.  
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