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Calculated transcriptional burst size

𝐵𝑖 ≈ 1 + 1.5〈𝑀𝑖〉0.64. 

Figure A related to Fig 3. Comparison of burst size predictions between different models. 

Based on experimental measurements, So et al. (So et al., 2011) predict that transcriptional burst 

size varies with mRNA population (<Mi>) such that 

Using the literature values for <Mi> we generated Bi values for E. coli using this expression and 

associated these with their corresponding <Pi> values (see the Supplemental Spreadsheet). 

In Fig. 3E of the main text we compare our predicted values of Bi – derived directly from the 

measured CV
2
 data – with those predicted by the So et al. equation as a function of protein 

abundance.  In the figure above the So et al. values are plotted versus our predicted values.  The 

B values in this graph are the median values taken over decades of protein abundance (i.e. the 

lowest B values are the median values found in the protein population from 0.1 to 1.0; the 

highest points are for the protein population from 1000 to 10,000). The black dashed line in this 

graph represents the x=y line. Our predicted values are highly correlated with the So et al. 

predictions (R
2
 = 0.995).   
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Figure B related to Fig 6. Transcriptional bursting in mammalian cells. For genome-wide 

transcription of the HIV-LTR promoter, burst size is dominated by changes in kOFF and not 

transcription rate. (left) The kOFF trend decreases by a factor of 4 while the a trend only slightly 

decreases. (right) As reported in (Dar et al., 2012), the burst frequency plateaus (average time in 

the off state approaches a constant value) with increasing mRNA abundance. The burst size 

increases through increases of the duration of time in the active promoter state. 



Distinguishing between an extrinsic and burst noise floor 

Eqns. 2 and 4 in the main text show that  

𝐶𝑉𝑖
2 =

𝑏𝑖 + 1

< 𝑃𝑖 >
(𝐵𝑖) + 𝐸 =

𝐶1

< 𝑃𝑖 >
+ 𝐶2, 

where C2 represents a noise floor.  Since  

〈𝑃𝑖〉 =
𝐵𝑖𝑏𝑖𝑓𝐵,

𝛾𝑝
 

where fB is the frequency of transcriptional bursts and p is the protein decay/dilution rate, 

𝛾𝑝(𝑏𝑖 + 1)

𝐵𝑖𝑏𝑖𝑓𝐵

(𝐵𝑖) + 𝐸 ≈
𝛾𝑝

𝑓𝐵
+ 𝐸. 

If at the larger values of <Pi> increasing protein abundance is primarily driven by increasing 

values of bi and Bi, and p is controlled by a constant cell growth rate, then the transcriptional 

burst frequency must remain relatively constant, and 

𝐶𝐵 + 𝐸 = 𝐶2,      (S-1) 

where CB is a constant value (the ratio of the protein decay rate to the maximum transcriptional 

burst frequency) that defines the burst noise floor.  Eqn. S-1 describes the noise floor as the 

combination of burst and constitutive extrinsic noise floors.  If CB is large enough, the 

constitutive extrinsic noise floor must be small. 

 

 

 

 

 

 

 

 

 

 



Forcing an extrinsic noise floor 

We tested various models of gene expression noise with significant levels of constitutive 

extrinsic noise to determine if they could parsimoniously represent the Taniguchi et al. 

(Taniguchi et al., 2010) noise data and transcriptional bursts described by the experimentally 

based model of So et al. (So et al., 2011). We tested the following models: 

Model 1 (Equation 1 from the main text): 

𝐶𝑉2 =
𝐵(1 + 𝑏)

〈𝑃〉
+ 𝐸 

Model 2 (two-state model): 

𝐶𝑉2 =
1 + 𝑏 + 𝐵𝑏

〈𝑃〉
+ 𝐸 

We obtained values of b from Eqn. 5 in the main text to apply to each of the two models. 

Average values of B were assumed to be related to protein expression through a power law of the 

form: 

𝐵𝑖 = max(𝐵𝑚𝑖𝑛,  𝑞〈𝑃𝑖〉𝑟) 

where Bmin = 1 for Model 1 and Bmin = 0 for Model 2. Values of q and r were adjusted to obtain a 

maximum likelihood fit of each model to the noise data of Taniguchi et al. (Taniguchi et al., 

2010). Log transformations of each model were used to obtain residuals that were near-normally 

distributed and with magnitude independent of <P>.  

Both models were evaluated for values of the extrinsic noise floor of E ranging from 0 to 0.1. To 

assess the ability of each model to describe the data of Taniguchi et al. (Taniguchi et al., 2010) , 

we used the Akaike information criteria (Akaike, 1974) (AIC): 

𝐴𝐼𝐶 = 2𝑘 − 2𝑙𝑛(ℒ) 

where k is the number of parameters in the model and ℒ is the likelihood of the model given the  

observed data. The AIC characterizes the information that is lost when a model is used to 

represent the underlying process that generates the data. The probability that a given model j has 

minimized the information loss compared to the model with AICmin is given by (Akaike, 1974): 

exp (
𝐴𝐼𝐶𝑚𝑖𝑛 − 𝐴𝐼𝐶𝑗

2
) 

and can be considered as a relative comparison of model quality. The log-likelihood 

ln[ℒ(𝑝, 𝑞|𝑟𝑖)] of each model was determined according to: 



ln[ℒ(𝑝, 𝑞|𝑟𝑖)] = ∑ ln (
1

√2𝜋𝜎2
𝑒

−
𝑟𝑖

2

2𝜎2)

𝑖

 

where ri are the residuals from the fit of the log-transformed model to the data of Taniguchi et al. 

(Taniguchi et al., 2010), 
2
 is the variance of the residuals, and the mean of the residuals is 

assumed to be zero. 

Maximum likelihood estimates of the model parameters q and r for each model are summarized 

below. Power law parameters from Eqn. 7 in the main text and from the power law function 

determined by So et al. (So et al., 2011) are provided for reference.  

Model Maximum Likelihood values of (q, r) 

E=0 E=0.05 E=0.07 E=0.1 

Model 1 0.426, 0.389 0.221, 0.444 0.182, 0.444 0.141, 0.427 

Model 2 0.111, 0.583 0.017, 0.785 – 0.00, 0.00 

Power law from 

Equation 7 in 

the main text. 

0.504, 0.368 – – – 

Power law from 

So et al., (2011) 

1.5, 0.64 – – – 

 

Results from analysis of Model 1 are presented in the Fig 4 of the main text. For Model 2, the 

relative likelihood of models with various levels of extrinsic noise are: 

 E=0 E=0.05 E=0.1 

Relative likelihood of Model 2 with various levels 

of extrinsic noise, E. 

1 2.57E-5 5.5E-29 

 

For Model 2, even moderate levels of constitutive extrinsic noise (E=0.05) result in unlikely 

models. For the highest level of extrinsic noise (E=0.1), the optimum fit was obtained for q=0 

and r=0, corresponding to strictly Poissonian mRNA expression across all expression levels and 

contrary to known transcriptional behavior (So et al., 2011). Therefore, our conclusion that 

bursty expression plays a major role in establishing the observed noise floor and that the noise 

floor cannot be the result of extrinsic noise acting alone, does not depend upon a particular 

model of gene expression noise (Fig 4). 

 

  



Transcriptional bursting in mammalian cells 

Using a high-throughput time-lapse imaging, we previously measured transcriptional burst size 

and frequency for over 2000 integration sites of a polyclonal population of human T-cells 

harboring diverse  integrations of a single HIV-LTR promoter driving a de-stabilized d2GFP 

reporter with a 2.5 hour half-life (Dar et al., 2012). Using this data and the reported equations for 

transcriptional burst size and burst frequency, Bs, BF, and koff are calculated for the HIV LTR-

d2GFP polyclonal sub-clusters or groups of single-cell with unique integration sites and similar 

mean expression levels (Dar et al., 2012). koff is calculated using an assumed low “on fraction” 

range of O < 0.2 and in addition the reported mRNA FISH measurement of 110 mRNA is 

assumed to be equivalent to O = 0.1 and used as a benchmark to calculate the O and koff values 

(using BF or kon) for each polyclonal sub-cluster by scaling by their <GFP>. Finally a = Bs*koff 

was calculated and a 5 sub-cluster moving average across abundance levels was applied before 

plotting the results (Figure B and Fig 6). 

 

 

  



Expression burst analysis 

If an expression burst (combined transcriptional and translational) occurs in a relatively short 

time period (i.e. if we consider kOFF >> kON), then we can approximate this as the product of 

three random processes: Process A (transcriptional initiation) composed of a Poissonian pulse 

train of impulse functions of weight = 1 and average value �̅�; Process B (transcriptional 

bursting) that is uncorrelated with process A, has a mean value of �̅�, and a variance of 𝜎𝐵
2; and 

Process b (translational bursting) that is uncorrelated with processes A and B, has a mean value 

of �̅�, and a variance of 𝜎𝑏
2. The autocorrelation functions of these three processes are 

𝜙𝐴(𝜏) = �̅�𝛿(𝜏) + �̅�2 

𝜙𝐵(𝜏) = 𝜎𝐵
2𝛿(𝜏) + �̅�2 

𝜙𝑏(𝜏) = 𝜎𝑏
2𝛿(𝜏) + �̅�2 

 

The autocorrelation function of the expression burst is given by the product of the 

autocorrelation functions of these three functions or 

 

𝜙𝐴𝐵𝑏(𝜏) = 𝜙𝐴(𝜏) ∗ 𝜙𝐵(𝜏) ∗ 𝜙𝐵(𝜏) = �̅�𝜎𝑏
2𝜎𝐵

2𝛿(𝜏) + �̅��̅�2𝜎𝑏
2𝛿(𝜏) + �̅��̅�2𝜎𝐵

2𝛿(𝜏) + �̅� �̅�2�̅�2𝛿(𝜏) 

 

where we have neglected all the �̅�2 terms because �̅� ≪ 1.  From this we get 

 

𝜎𝐴𝑏𝐵
2 = �̅�𝜎𝑏

2𝜎𝐵
2 + �̅��̅�2𝜎𝑏

2 + �̅��̅�2𝜎𝐵
2 + �̅� �̅�2�̅�2 

and the Fano factor (which would be the Fano factor of the protein abundance) is 

𝐹𝐹𝐴𝑏𝐵 =  𝐹𝐹<𝑃> =
𝜎𝐴𝑏𝐵

2

�̅� �̅��̅�
= �̅��̅� +

𝜎𝑏
2𝜎𝐵

2

 �̅��̅�
+ �̅�

𝜎𝑏
2

 �̅�
+ �̅�

𝜎𝐵
2

 �̅�
 

or   

𝐹𝐹<𝑃> = �̅��̅� + 𝐹𝐹𝑏 ∗ 𝐹𝐹𝐵 + �̅� ∗ 𝐹𝐹𝑏 + �̅� ∗ 𝐹𝐹𝐵 = (�̅� + 𝐹𝐹𝐵)(�̅� + 𝐹𝐹𝑏), 

where FFb and FFB are the Fano factors of translational and transcriptional burst sizes 

respectively.  



In the absence of constitutive extrinsic noise FFb=1 and for the two-state model of transcriptional 

bursting 𝐹𝐹𝐵 = 1 (Kepler and Elston, 2001; Simpson et al., 2004), so that 

 

𝐹𝐹<𝑃> = �̅��̅� + 1 + �̅� + �̅� = (�̅� + 1)(�̅� + 1). 

 

This equation points out that in the two-state model a transcriptional burst size, B = 1 produces a 

different Fano factor (FF = 2 (1 for the value of �̅� and an additional + 1 for the Fano factor of 

B)) than Poissonian expression of single mRNA molecules.  

To overcome this apparent discrepancy in the Fano factor in the two-state model, we introduce a 

model in which the first mRNA synthesis event begins the burst, and the number of synthesis 

events that follow the initiating event (BE) is a random variable.  In that case, 

 𝐵 = 1 + 𝐵𝐸 

where the 1 term stems from the Poissonian process of initiation events and BE is the randomized 

process contributing to the variance in the burst size. Therefore to recover B, BE must equal B – 

1, and the variance in B exclusively comes from BE 

𝜎𝐵
2 = 𝜎𝐵𝐸

2 = 𝐵𝐸 

From this it follows that, 

𝐹𝐹𝐵 =
𝜎𝐵𝐸

2

𝐵
= 1 −

1

�̅�
 , 

And at the low end of expression where �̅� ≈ 1, 

 

𝐹𝐹<𝑃> ≈ �̅�(�̅� + 1).     (S-2) 

In contrast to the two-state model, this model provides a smooth transition from Poissonian 

expression of single mRNA molecules to bursts of multiple mRNA production.   

Note that the model presented here is based on a burst of protein expression where the average 

size of the burst is b*B and the frequency of the burst is driven by the random process A as 

described above.  These conditions can be violated when b << 1, where almost regardless of the 

value of B, protein expression is nearly Poissonian.  In such cases – which all occur at low values 

of <P>  –  CV
2
 goes as 1/<P> (the Poissonian regime in Eqn. 8 of the main text). Since noise 



behavior is so insensitive to transcriptional burst size in this regime, it is difficult to extract 

accurate values of B from the protein noise for the lowest protein populations.   
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