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Introduction 

The primary goal of this supplementary information document is to describe the 

mathematical and computational analyses used to analyze time-lapse fluorescence imaging of 

reporter gene expression that were used to generate noise maps and extract information on 

promoter dynamics and kinetics.  We first describe the experimental methods used to create the 

lentiviral reporter vectors and the microscopy methods for obtaining single-cell trajectories for 

the construction of noise maps.  We then summarize the analytical treatment of the two-state 

model of transcriptional bursting and describe the noise-map signature of transcriptional 

bursting.   

 

EXPERIMENTAL METHODS 

Cloning of lentiviral vector reporters 

All reporter vectors are lentiviral vectors.  DNA manipulations were performed using 

standard restriction enzyme cloning and PCR cloning techniques (1). All references to GFP here 

and in the main text refer to enhanced GFP, a.k.a. EGFP (Clontech Laboratories, Mountain 

View, CA) and encode a PEST destabilization domain (a.k.a d2EGFP). The LTR-d2GFP 

reporter vector (Ld2G) was cloned from the described LTR-GFP vector (2) by exchanging the 

EGFP coding region for d2EGFP obtained from pd2EGFP (Clontech Laboratories).  The UBC 

reporter vector was constructed from the FUGW plasmid (3) by exchanging the GFP-WPRE 

coding region for d2EGFP.  The EF1A reporter vector was constructed from the pLEIGW 

plasmid (4) by exchanging the IRES-GFP-WPRE coding region for d2EGFP. For the two-color 

assay, the d2EGFP within Ld2G was replaced by a mCherry cDNA to generate LmCh. Cloning 
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details are available upon request.  All reporter vectors were packaged and concentrated as 

described (1). 

Cell culture & time-lapse fluorescence imaging conditions 

Jurkat T cells were maintained in RPMI medium 1640 with L-glutamine (Invitrogen, 

Carlsbad, CA), supplemented with 10% fetal calf serum and 1% penicillin-streptomycin.  Cells 

were maintained at 37º C, 5% CO2, under humidified conditions at densities of 2x10
5
-2x10

6
 

cells/ml.  Cells were infected in culture medium at a multiplicity of infection (MOI) < 0.1 and 

flow cytometry analysis was used to assay MOI as described (2).  In some cases, GFP-positive 

cells were enriched by FACS sorting to increase imaging throughput, but no difference in the 

noise maps could be detected between experiments on sorted and unsorted populations of cells 

(comparative data not shown).  The EF-1αd2G + LTRmCh cell line is a two-color cell line where 

Jurkat T cells were first infected at an MOI < 0.1 with the EF-1α promoter driving d2GFP. For 2-

color experiments, GFP-positive cells were FACS sorted, then infected with the LTR promoter 

driving mCherry at an MOI < 0.1, and FACS sorted again to isolate the newly mCherry-positive 

cells. This yielded a polyclonal population of cells with a single integration of EF-1α driving 

GFP and a single integration of the LTR driving mCherry within the same cell.  

All time-lapse fluorescence microscopy was performed on live cells at 37ºC/5% CO2 

under humidified conditions.  The following microscope setup was used: an Olympus DSU 

confocal microscope equipped with a WeatherStation environmental chamber (Precision Control 

Instruments), a Hamamatsu ORCA II ERG camera, a 40X UPLANSAPO oil-immersion 

objective (N.A. = 1.2), a metal-halide illumination/excitation source (Prior Lumen 200), a Prior 

automated linear-encoded X-Y stage, and Slidebook image acquisition software.   
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As described (5), live cells were immobilized on Matek™ glass bottom dishes and 

images were collected once every 10 min for 12 h: exposure times were set at 500 msec for all 

experiments and photobleaching of samples under these imaging parameters was not detected.  

Image processing to obtain cell trajectories was performed using established tracking and 

segmentation algorithms (5), the codes for which are available upon request.  

After computer-automated collection of single cell GFP intensity trajectories each 

trajectory was manually “quality controlled” to remove outliers due to irregular cell morphology 

or movement during imaging.  Up to 500-800 quality-controlled single cell intensity trajectories 

are collected per overnight experiment resulting in data collected from thousands of cells after a 

series of experiments.  

TNF (or TNF-) was obtained from Sigma Chemical Co. (St. Louis, MO), dissolved in 

DMSO, and added to cells at final concentration of 10ng/ml. For TNF addition experiments, 

cells were chronically exposed to TNF for 18hrs. In the wash experiments after the TNF 18 h 

incubation (SI Figure 17), the cells were then washed twice with PBS and plated for imaging as 

described above. Average time from wash to imaging was 1.5 h.  

 

Cell Synchronization (see Fig.  S2) 

 Jurkat T cells were synchronized using centrifugal elutriation as described (6). Flow rates 

were adjusted from 14.4 to 15.5 ml/min while kept at a constant spin of 2200g to collect the first 

fraction. For every 10-15-ml fraction collected, the subsequent fraction would be collected at a 

flow rate of 0.5 ml/min higher.  To analyze synchronization, 1-mL samples were taken from each 

fraction, mixed with 1 mL of a 1% NP-40, 10 ug/mL propidium iodide (PI) solution (Sigma 



7 

 

Chemical) in PBS, and analyzed by flow cytometery.   Approximately 1000 live cell counts were 

obtained per fraction and cytometer gates were drawn as described (6).  

 

ANALYTICAL AND COMPUTATIONAL METHODS 

Two-state model of transcriptional bursting 

Transcriptional bursting is a model of gene expression where the expression rate is 

controlled by switching between discrete high and low transcriptional rates.  The average rate is 

determined by the fractional amount of time spent in each of the two states. This model is 

consistent with transcription controlled through protein–DNA interactions at an operator site 

within the gene-promoter region or with the bursty expression of genes compacted in chromatin. 

To illustrate the model, we present equations adapted from an earlier analysis (7) with the 

simplifying assumptions that at the low expression state the transcription rate is 0, and that other 

than burst dynamics there is only one dominant time constant (usually either protein or mRNA 

decay dilution) represented by the rate constant γd.  These assumptions are only made to lead to 

simple analytical expressions that aid in 

developing an intuitive understanding of the 

system, and are not meant to constrain the 

simulations provided below.  

The transcriptional bursting is 

represented by three model parameters (see 

Figure below): (1) the transcription rate in the 

high expression state, km, (2) the fraction of time spent in the high expression state, O, which we 

will also refer to as the ‘on fraction’, and (3) the kinetics of the switching between off and on 

The 2-state model as described 

above.  The gene transitions 

between active (G1; transcription 

rate =km) and inactive (G0; 

transcription rate =0) states.  The 

fraction of time spent in state G1, 

O, is given by
of fon

on

kk

k
O


 .  
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expression states, which is represented by k (referred to here as the burst kinetic rate), the sum of 

kON and kOFF. 

  

km

 

As reported (8), with these assumptions, the autocorrelation function of the noise, Φ(τ), is 
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where b is the translational burst rate (average number of proteins translated from each mRNA).  

The average protein population, <p>, is 

 

d

mObk
p


  

 

and the noise magnitude, CV
2
 is 
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The first term on the right, referred to as the shot-noise term (7), may be significant at (i) 

low protein population, (ii) values of O that approach unity (constitutive expression), or (iii) if 

k>> γd (fast switching between expression states). Conversely, the second term on the right, 

referred to here as burst noise, is more prominent at (i) low on fraction, (ii) high protein 

population, or (iii) slow switching between transcriptional states (γd >> k).   

The dominant-noise term—whether it is shot noise or burst noise—plays an important 

role in determining the noise structure.  If the shot-noise term is dominant, CV
2
 varies inversely 

with protein abundance, and correlation is determined primarily by γd. The shot-noise dominated 

noise map is indistinguishable from the constitutive expression noise map with most trajectories 

clustered around a diagonal line that runs through the origin (Fig. 2d, left graph, in the main 

text). Conversely, if burst noise is dominant, CV
2
 is shifted upward and varies inversely with the 

on fraction and the switching kinetics.  The correlation component of the noise also shifts 

inversely with the burst kinetic rate such that long on periods, followed by long off periods lead 

to large correlation values. The net effect of transcriptional bursting on the noise maps is a shift 

to the upper right quadrant as illustrated in Figures 1-2 of the main text. 

Equation S-1 (above) shows how different gene-expression mechanisms differentially 

affect the noise structure.  For example, translational bursting is represented by the parameter b, 

which modulates the magnitude of both shot and burst noise, yet has no effect on correlation as it 

does not appear in any of the exponential terms.  Conversely, transcriptional bursting is 
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controlled by the parameters kon and koff, which in turn affect O, thereby increasing the magnitude 

of burst noise, and k, thereby increasing the burst-noise correlation time.  As a result, 

transcriptional bursting has a noise signature that is distinct from that produced by translational 

bursting. 

We define the noise (Ni(t)) of cell i as 

                (S-3) 

where Ii(t) is the measured fluorescence intensity concentration of cell i, gi is a gain factor for the 

amount of deterministic coupling of the general population trend into each individual cell i, and 

G(t) corrects for background fluorescence and any drift or general trend in fluorescence over 

time, and removes the average fluorescence level of each cell over the 12-hours of observation 

(9). This removal of the average level from each fluorescence trace effectively high-pass filters 

the noise (see Supplementary Information and (9)). Accordingly, we refer to the autocorrelation 

functions derived from the processed noise traces as high-frequency autocorrelation functions 

(HF-ACFs), and the noise maps with noise correlation and magnitude attributes presented in the 

current study are all HF noise maps.  

 

 

Effect of LTR transcriptional stall on transcriptional bursting 

To illustrate the effect of the LTR transcriptional stall burst behavior, here we model EF-

1α and LTR promoters exhibiting the same base transcriptional bursting behavior that differ only 

in the transcriptional stall for the LTR promoter.  This transcriptional stall is due to a 

nucleosome-with high affinity for a stretch of DNA at the nuc-1 position within the LTR that 

blocks RNAPII elongation, thereby delaying the start of the LTR transcriptional burst.  We 
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model Ef-1α transcription with stochastic burst that, on average, are on for a duration of on  

followed by off periods of average duration of off .  We model the LTR transcriptional stall as a 

stochastic delay (average duration = d ) between the leading edge of the transcriptional burst 

and the actual start of LTR transcription (Figure below). To simplify the analysis, this model 

uses a lumped delay at the beginning of the transcriptional burst.  Using this approximation,  
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and the major effect of the transcriptional stall is seen as a reduction in the measured O for LTR 

compared to Ef-1.  

 

 

Although the period (τon+ τoff) remains constant, the transcriptional stall may affect the 

measured transcriptional burst dynamics by changing the value of k.  Using the model above 
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where the s subscript indicates the effective values for kon and koff including the transcriptional 

stall. For this case,  

 

      (S-5) 

and if d  is small compared to on  and off  

 

. 

 

 

 The measured noise maps show that LTR has a higher CV
2
 (which is indicative of a 

lower on fraction), but has a nearly identical distribution of HF-1/2 (see figure S-4). This would 

seem to indicate that for most integration sites, d  is small compared to on  and off  and that the 

major effect of the transcriptional stall is an increase in the noise magnitude.  However, this 

general observation should not be applied to specific cases.  In some integration sites, d might 

significantly alter the bursting dynamics. 
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High-frequency noise processing focuses on intrinsic noise 

 

Other than resolving the ambiguity between low frequency gene expression fluctuations 

and differences in basal gene expression levels (SI Figure 1), the individual cell noise mean 

suppression and high-pass filtering essentially focuses on high frequency intrinsic noise and de-

focuses the low-frequency extrinsic noise (SI Figure 2). Analogous to gating in flow cytometry 

(to reduce extrinsic noise sources related to cellular state and cell cycle), this in silico high-pass 

filtering reduces low-frequency extrinsic noise from all extrinsic noise sources. To observe this 

effect, we simulated constitutive gene expression using various levels of extrinsic noise using the 

intrinsic and extrinsic noise-simulation model described in the Supplementary Information and 

reference (10). Since the intrinsic noise is directly modulated by gene circuit structure and 

function, the high-pass filtering enhances the quality of autocorrelation analysis to understand 

the function of gene circuits without any additional extrinsic noise background. Finally, it is 

worth noting that although infinite duration analysis and measurements would be informative, 

experimental limitations occlude this possibility. Therefore, it is precisely the short-duration 

expression windows we are analyzing that the individual cell ‘sees’, and phenotypic dynamics 

and decisions take place over these expression windows. So although, at first, the multiple-step 

noise-processing algorithm from (9) was developed to resolve various experimental obstacles, in 

the end, it provides an in silico tool with a biological view that is highly relevant in vivo. 
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SI Figure 1: Baseline expression shifts are indistinguishable from low-frequency 

fluctuations. Distinguishing between baseline expression level shifts and long correlation 

fluctuations in a limited imaging duration window becomes very difficult. A single-cell 

expression level is measured over an experimental imaging window exp (solid black) and 

is found to exist above the deterministic population trend (A(t)), (thick dashed black). It 

is difficult to determine if the signal (dotted blue, (i)) is fluctuating quickly about a 

possible baseline shift of the deterministic trend (thin dashed blue), or is a segment 

sampling of a low frequency fluctuation (dotted red, (ii)) fluctuating about the true 

deterministic trend (thick dashed black). Both possible fluctuations (i and ii) may be 

legitimate samplings of the correlation spectrum for a given gene circuit.   

 

 

 

 

 

 

 

 

 

 

 

 

time

(i) 

(ii) 

exp
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SI Figure 2: HF-processing focuses on intrinsic noise and filters out extrinsic noise. 
Using the described intrinsic/extrinsic noise simulation, we can estimate how much noise 

magnitude is filtered out or emphasized with the 12-hHF-noise processing. For a large 

range of extrinsic noise contribution, intrinsic noise contribution is enhanced ~1.1-2.3 

times of the total noise, while extrinsic noise is de-emphasized (filtered) down (e.g. 55% 

extrinsic of total noise filters down to ~15% of total noise, 40% of total to 5% of total, 

and so on). 

 

 

Noise Mapping 

Each point on the noise map represents the noise magnitude and correlation of an 

individual cell relative to what we have termed the noise “bias vector”.  That is, the noise-map 

location (which we designate as the noise vector ) of the individual cell i is given by 

    

 
c

flCV

CV
tN

ibias

i

bias

i

i
ˆlogˆlog

2

2

10

21
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10 
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           (S-6) 
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SI Figure 3: Least bursty isoclones to 

determine the bias vector. HF-CV
2
 vs. average 

fluorescence level for clones C32 (58 cells) and 

D36 (87 cells).  From these measurements the 

CV
2
 component of the bias vector (green line) was 

found as 0.6/<fl>.  

 

 

where   and  are unit vectors in the x and y directions on the noise map;  2

iCV  and 
21i

  are the 

measured high-frequency CV
2
 and half-correlation time of cell i (see discussion above about 

high-frequency processing);  ibias flCV 2  and 
21bias  are the components of the bias vector; and 

ifl is the average fluorescence measured from cell i.   In the ideal case, the bias vector would 

represent the noise of true constitutive expression whose CV
2
 would depend on the GFP 

concentration (i.e., fluorescence level), while the half-correlation time would be constant for any 

GFP concentration.   

 

We used both experimental and 

simulation approaches to determine the bias 

vector for the 18-h experiments presented in 

the main text. The same bias line is applied to 

12-h experiments after adjusting for 

experiment duration with simulations (Figure 

S1). Experimentally, we examined the half-

correlation times measured for isooclonal 

populations carrying the Ld2G circuit in 

search of integration site(s) where transcriptional bursting was having the least pronounced affect 

on noise behavior (i.e. low half-correlation times).  Starting with a library of clones (2, 11), we 

identified two clones with low half-correlation times compared to other isoclonal populations 

and the polyclonal measurements. Moreover, in addition to correlation times these isoclones 

displayed considerably lower noise magnitude compared to other clones (Figure S1). 
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SI Figure 4: Isoclones with lowest correlation time to determine 

correlation bias vector. The distribution of HF-T50s measured for clone C32 

and D36 (purple).  The bias vector value of HF-T50 was selected as 1.92 

hours.  The blue line shows the simulated HF-T50 distribution for constitutive 

expression (see Table S-1 below) and HF-T50 = 1.92 h, which is seen to fit 

well with the lower mode of the C32 and D36 HF-T50 distribution.  The 

higher HF-T50 peaks in the isoclone distribution (purple) are indicative of 

some transcriptional bursting in these clones. 

 

Accordingly, we based our 18-hr bias vector on these two clones, SI Figures 3 and 4, which 

gives 

 
fl

flCVbias

6.02   

hoursbias 92.12/1_     (S-7) 

 The high frequency 21  of these clones exhibits distributions with one mode peaking 

between 1.5 and 2.0 h, and additional secondary peaks between 2.25 and 4 h (SI Figure 4).  The 

higher correlation peaks are evidence of transcriptional bursting in these clones, but the strong 

lower mode indicates that transcriptional bursting is not as pronounced in these clones as it is in 

others.  
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To simulate the least bursty clones, the GFP half-life was set to a measured 2.5 h in 

agreement with its reported value (12, 13), and the mRNA half-life was selected to have the 

largest possible value consistent with the kinetics of GFP fluorescence approaching steady-state 

after activation with TNF and with the shortest measured τ1/2 (LTR +TNF) (SI Figures 5 and 6). 

The HIV LTR encodes multiple NFκB sites and is potently activated by TNF across all 

integration sites (14).  Consistent with the model that enhancers increase the probability of 

transcriptional initiation (15), exposure to TNF results in faster kinetics for the LTR.   

 

 

SI Figure 5: An mRNA half-life of ~100 min was estimated using transient times with 

TNF induction of two different LTRd2GFP polyclonal and two different LTRd2GFP 

isoclone experiments. 
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Isoclonal Polyclonal

Constitutive
Constitutive

 

SI Figure 6: Second approach to mRNA half-life estimation using the maximal decrease in 

correlation time via TNF induction using polyclonal and isoclone experiments. Constitutive line 

is based on simulation of Table S-1 and an mRNA half life of 100 min. Similar to Figure 5 in the 

main text, here the non-continuous induction with TNF falls below the simulated constitutive 

line. These are based on least bursty isoclones which may have been additionally bursty causing 

this shift, in which case the constitutive bias line used would minimize the observed system-wide 

burstiness, or the non-continuous modulation with TNF may also strongly affect correlations. 

 

The mRNA half-life was estimated using the correlation times (SI Figure 4), the transient 

expression time constants from TNFinduced conditions in LTR isoclones and polyclones (SI 

Figure 5), and the magnitude of correlation shift with TNF addition (SI Figure 6) under the 

assumption that TNF addition cannot speed up the kinetics faster than the underlying primary 

time constants. The three approaches are consistent with one another and used for the following 

simulations in the main text (Bias line and Figure 3B). 

Parameters for the model are given in Table S-1 below. This model was used to generate 

the non-bursty noise map origin in Figure S1 and 3B. 
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Table S-1. Parameters used in simulations and experimentally determined burst dynamics 

Parameter Value used or 

quantified 

Range from literature Resource 

<GFP> 30000 – 120000  Singh et al., BoJ 

(2010)(16) 

b  

(GFP/mRNA lifetime) 

420 
Or 115 mRNA/h 

662 (max value) 

180 mRNA/h (max) 

Schwanhäusser  et al., 

Nature (2011) (17) 

mRNA H-L 100 min Lands within possible 

values, on lower end 

Sharova et al., DNA Res 

(2009) (18) 

GFP H-L 2.55 h Measured with 

cycloheximyde addition 

Data not shown. 

Burst Frequency 0.003-0.01 min-1 

(0.01-0.057 min-1
 for 

EF1A and UBC 

promoters, Figure S7) 

0.02-0.055 min-1 Suter et al., Science 

(2011) (19) 

Burst Size 100 – 300 (# of 

mRNA) 

Average = 40, max = 

~200 (w/TetO 

promoter) 

Raj et al., PLoS Biology 

(2006) (20) 

 

CONTROL: Testing for lentiviral integration hotspots 

To control for potential bias introduced by possible oversampling of lentiviral integration 

“hotspots” (21), we analyzed random sub-clusters of 500 cells each in the Ld2G poly dataset. If 

the data were dominated by integration hotspots, the hotspots would be statistically 

underrepresented in a proportion of sub-clusters, and the sub-clusters would exhibit different 

noise-map centroid positions. However, we obtained a tight clustering of noise-map centroid 

positions for all sub-clusters (SI Fig. 7), providing strong evidence against oversampling of 

lentiviral integration hotspots.  
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SI Figure 7: Control for potential bias introduced by possible oversampling of lentiviral 

integration ‘hotspots’.  Each of the gray points above represents the noise-map centroid of one 

sub-cluster of 500 cells randomly sampled from the entire population of cells. These random 

sub-clusters are closely distributed around the noise map centroid of all the cells (shown in red). 

If the data were dominated by integration ‘hotspots’, these hotspots would have been statistically 

underrepresented in a proportion of sub-clusters, which would have been reflected in different 

noise-map centroid positions. 
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Effect of longer sample recovery 

An additional 6 h of sample recovery before imaging had no affect on the resulting composite 

noise-map coordinate. The coordinates for a combination of isoclonal experiments, and the 

composite coordinates for over 1000 cells of the Ld2G polyclonal experiment is shown in SI 

Figure 8. 
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SI Figure 8: Six additional hours of sample recovery do not influence noise map 

coordinates. This was performed for both a combination of LTR d2GFP isoclones (left) and the 

polyclonal population (right). 

 

 

Cell-cycle synchronization 

Cell synchronization was performed using centrifugal elutriation (see Cell 

Synchronization section) yielding a synchronized population containing ~85-90% of cells in the 

G1 phase of cell cycle.  To obtain sufficient cell counts, three elutriated fractions were pooled 

together; each fraction comprising the pool contained cells synchronized at 92.6% (yellow), 

83.9% (green), and 86.4% (blue) in G1 phase (shown below as percent max versus FL2 area). 

The control population contained a population synchronized in G1 to about 68% (red).  
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SI Figure 9: Distributions of cellular elutration for isolating cells in G1 phase. 

The pooled fractions (85%-90% synchronized in G1) were imaged (using the same 

imaging parameters as described above) to obtain noise maps.  The noise maps for a G1-

synchronized Ld2G population were then compared to the noise maps of an unsynchronized 

Ld2G population to calculate noise-map centroids, in order to check for any differences between 

synchronized and unsynchronized cells (Figure S3).  No significant difference could be found 

between synchronized and unsynchronized Ld2G cells as evidenced by the centroid locations in 

the noise map space (Figure S3). 

 

To further determine if there are differences between synchronized and unsynchronized 

cell populations, we compared the HF-T50 distributions. Both synchronized and unsynchronized 

cells were shifted more in HF-T50 than the constitutive model (SI Figure 10) with the mean of 

the shift being the same for both synchronized and unsynchronized Ld2G populations. 
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SI Figure 10: HF-T50 distribution comparison of  

synchronized versus unsynchronized populations. 
Comparison of HF-T50 distributions for the constituitive 

model (green), an unsynchronized Ld2G cell population 

(red) and a synchronized Ld2G cell population (purple). 

The constitutive distribution is the measured ‘most 

constitutive’ distribution described above for clones C32 

and D36. No significant difference could be detected 

between the the means or medians of the Ld2G 

synchronized versus unsynchronized populations; peaks 

in the synchronized Ld2G cell population have smaller 

cell numbers than the unsynchronized population. 

 

Finally, we compared the first 6 and last 6 h of synchronized Ld2G population imaging to test if 

the transcriptional burst frequency was changing during cell-cycle progression.  The results show 

that the Normalized Composite Autocorrelation (NCAC)(5) during 0-6 h yields a slightly shorter 

(but not statistically significant) HF-1/2 compared to 6-12 h. 

Constitutive model 

Ld2G (unsynchronized population - 2199 cells) 

Ld2G (synchronized population – 192 cells) 
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SI Figure 11: Comparison of cell-cycle 

dependent autocorrelation in a synchronized 

population. 

 

Distinguishing behavioral noise shifts with limited duration experiments  

 A significant universal drawback of time-lapse microscopy is the limited time that one 

has in which to conduct experiments. This is usually due to sample stability, the biological 

process itself being difficult to observe for long time periods, or simply the inability of the 

researcher to run truly “infinite duration” experiments. The limited-duration fluorescence signal 

causes variability in the measurement that must be quantified to distinguish between differences 

in measurement and differences in the underlying biological behavior.  

 The following two sections are used to estimate error bars for population centroids in the 

noise map and the modulation in single-cell scatter as a function of number of cells collected and 

experiment duration. Scatter decreases with increasing cells in the ensemble and observation 

duration. Centroids of both isoclone (SI Figure 12) and polyclone populations (Figure S4) 

separate from one another and are statistically significant even though their single cell scatters 

may be large or have significant overlap in the main text figures. 
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SI Figure 12:  Centroid representation for three isoclones. Centroids for LTR 

isoclones from Figure 2 in the main text. Error bars for both axes are small and 

appear inside each data point symbol. 
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Noise-map centroid error-bar estimation 

Centroid error bars were estimated by sampling 10,000 subgroup ensembles of various sizes 

from the experimental single-cell Ld2G polyclonal scatter that has ~2.5k cells. 10-k centroids 

were calculated from the 10-k subgroups of each ensemble size, and +/- 1 error was calculated 

and plotted for each noise-map axis for Supplementary Figure S4. 

 

SI Figure 13:  Noise variability dependence on number of cells in experimental 

ensemble. Centroid error bars for normalized Δτ1/2 (left) and normalized ΔCV
2
 (right) 

estimated for the largest experimental polyclonal noise map (Ld2G) with ~2500 

individual cell trajectories.  Error shown for sampling of 10,000 subgroup ensembles 

as the number of cells in the ensemble is varied (x-axis). 
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Dependence of noise map variance on experiment duration 

In the polyclonal noise-maps (Figures 3B and Supplementary Figure S1), the variance or 

“spread” in data points (i.e., cell trajectories) used to create each noise map is partly due to these 

differences in burst kinetics arising from the sampling of many integration sites (Fig. 3B), partly 

to the inherent limited-duration nature of imaging experiments (See SI Figures 14 and 15 below), 

and partly to the inherent cell-to-cell variation or limited time-duration imaging of each 

individual cell. Strikingly, the degree of spread in the isoclonal noise maps (Figures 2D) is 

similar to the spread observed for the polyclonal LTR noise map (Figure 3B), arguing that cell-

to-cell variation, in addition to integration-site differences, must account for a large degree of the 

polyclonal scatter. Notably, the LTR polyclonal noise map still has a larger spread than any one 

of the individual isoclone noise maps alone.  

Since all of the noise maps are based upon limited data from finite-duration imaging 

experiments, we tested how the duration of the experiment contributes to the cell-to-cell variance 

observed in noise maps (See SI Figures 14 and 15 below). Simulation of constitutive gene 

expression and imaging results show that experiment duration clearly puts a boundary on the 

length of correlation time than can be resolved, with longer experiments allowing longer 

correlation times to be resolved (SI Figure 14, panel a). In addition, simulations of constitutive 

expression show a marked contraction of the spread in data points for longer duration 

experiments (SI Figure 14, panel b). This contraction occurs because at the infinite duration limit 

the noise map collapses into a single point at the origin (8). In addition, panel b demonstrates 

how the high-frequency noise magnitude and correlation (see (9, 10) for review) compare to the 

true or infinite-duration noise-attribute values as a function of experiment duration. Using this 

calculation, we observe that constitutive experiments of 12-h duration, such as those presented 
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here and in a previous study (9), represent up to ~60% of the true underlying stochastic process. 

For experiments of durations greater than 60 h (or 2.5 days), the composite noise of high 

frequency (HF)-sampled experiments approaches true or infinite duration behavior. Of note that 

for 2-state bursty simulations, covering a range of parameter space, 12-h experiments represent 

about a third of noise magnitude and correlation of true infinite duration values (data not shown).  

The experimental data show similar trends with the correlation time boundary being extended 

along with a rotation and narrowing of the noise-magnitude axis spread in longer imaging 

experiments (SI Figure 14, panel c). SI Figure 15 further explores the trend by quantifying 

spread, centroid coordinate, and variability for an experiment analyzed from 6 to 24 h of data. 
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SIMULATION SIMULATION EXPERIMENT

 
SI Figure 14:  The variance (or spread) of a noise map is due to both the limited-duration of imaging experiments and intrinsic 

cell-to-cell variation. (a). Noise map signatures of constitutive expression simulations for 4- to 12-h durations. The graph shows a 

linear increase in the noise-map-correlation time cutoff with increasing experimental duration. (b) Simulated noise-map signatures for 

durations of 18–120 h. As simulation-experiment duration increases, the composite high-frequency noise magnitude and correlation 

(9, 10) approach their true, infinite-duration values. (c) Experimental, polyclonal noise-probability density maps of the Ef1 promoter 

data for 6- and 18-h durations. Similar to the simulation cases in panels a and b, the increased duration signature has an extended 

correlation cutoff, slight rotation, and decreased noise-magnitude spread.  
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SI Figure 15:  Noise-map rotation, narrowing, and shift with increasing experiment 

duration. (Above) A polyclonal experiment is processed for durations ranging from 6-24 h. The 

correlation-time cutoff gets extended in parallel to a rotation and shift to the upper-right-hand 

quandrant. Centroids of each noise-probability density map are also plotted to the lower right. 

(Below) The standard deviation of the single-cell noise-map spread decreases in the noise 

magnitude axis and increases in the correlation axis.

EXPERIMENT 
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Are noise map shifts due to extrinsic noise? 

In addition to transcriptional bursting, extrinsic noise (22) could be responsible for the 

measured noise-map shifts to the upper right quadrant. However, a principal advantage of high-

frequency (HF) processing is that it focuses on high-frequency intrinsic noise, which is directly 

modulated by gene circuit structure and function while de-emphasizing lower-frequency 

extrinsic noise. To examine extrinsic noise-mediated shifts in HF noise maps, we simulated 

constitutive gene expression with various levels of extrinsic noise in the noise-simulation model 

described in the Supplementary Information of Austin et al., (10). The figure below shows the 

unfiltered and HF-mediated shifts in the average noise-map locations for extrinsic noise levels of 

9, 39, and 56% of total noise.  Although the unfiltered noise-map locations show considerable 

movement away from the origin with the addition of extrinsic noise, the HF-processed points 

remain contained in a region near the origin. As a result, the noise-map shifts shown in the main 

text cannot be accounted for by assuming large amounts of extrinsic noise.   

Extrinsic_21D
 

SI Figure 16:  12-hour HF-noise filtering of extrinsic noise. 



33 

 

Sub-cluster processing of polyclonal experiments for “effective isoclones” 

To quantify the intensity-dependent transcriptional burst dynamics a sub-cluster processing 

approach of the polyclonal population was applied to the collected intensity trajectories. The 

total number of intensity-dependent sub-clusters was selected to minimize variability due to 

finite-duration experiments and cell-to-cell. GFP intensity trajectories were sorted into clusters 

based their individual final intensity concentration (Supplementary Figure S6). Here it is 

assumed that each sub-cluster represents an “effective clone” for a given intensity range. A 

previously reported noise-processing algorithm was applied separately to each sub-cluster (9), 

and composite noise magnitude defined by the cluster composite coefficient of variation ( from 

composite autocorrelation function divided by the cluster mean intensity), and average intensity 

concentrations were extracted. The resulting LTRd2GFP (Ld2G) polyclonal noise trend 

including ~2000 cells is represented in Figures 4B-C. A single burst model line (Methods) 

describes most of the sub-cluster noise magnitude trend (Figure 4C). Sub-clusters at higher 

abundances appear to deviate to higher noise magnitudes. Equivalence of the sub-clustered 

processing to isoclones is seen with conventional flow cytometry measurement of isoclones in 

Figure S6. Similar equivalence is observed with exogenous drug addition (Figures 5B and S6). 
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Sub-cluster processing of isoclones fall along different regions of the sub-clustered 

polyclonal trend  

To examine the degree to which the polyclonal sub-clustered noise and burst trends truly 

represent a large range of isoclone behavior, we processed individual isoclones in an identical 

manner. If the polyclonal trend represents a range of isoclones then the isoclone trends would 

land along the polyclonal trend, according to their respective abundance range. This is observed 

in SI Figure 17. Note that isoclonal population F76 curls between the low and high abundance 

domain pivot of the noise signature, while isoclonal population F32 lands on the upward high 

abundance and CV trend. This control demonstrates that among the isoclones sub-clustered, a 

single isoclone cannot describe the full polyclonal behavior quantified. An isoclone with its TNF 

addition counterpart and shift are plotted to the right. 
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SI Figure 17:  Sub-cluster processing of LTR isoclones. Four isoclone populations were 

processed by sub-clustering by expression levels (left), two of which are before and after TNF 

addition (right). The results demonstrate that the noise of individual clones contribute to specific 

regions of the global polyclonal signature (empty circles). 
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Recovery of noise map centroid after addition and wash of TNF

To further validate that a direct modulation of transcription is occurring with the addition of 

TNF to the LTR promoter, a TNF wash control was performed to observe a relaxation of 

noise map centroid back to the untreated state. 



SI Figure 18:  Sub-cluster processing of LTR TNF poly and LTR TNF WASH poly. With 

washing TNF the noise map centroid gradually returns to the approximate position of the 

untreated Ld2G poly centroid. Initially the TNF increases noise magnitude as the TNF sub-

clusters fall on the high abundance, high burst size and magnitude parts of the non-TNF trends.
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Noise and burst analysis of Ld2G poly exposed to exogenous trichostatin A (TSA)  

In addition to TNF we treated the polyclonal population with trichostatin A (TSA), a 

histone deacetylase inhibitor, and observed an increase of all clones to higher abundances, an 

increase in BS, and a roughly constant BF (SI Figure 19). Collectively, the TNFand TSA burst 

trends following the non-drug trends, and switching burst dynamic regimes at the same 

abundance threshold, suggests that both promoter regulatory sequence and local chromatin 

structure contribute and shape a burst dynamic landscape. The integration site landscape 

synergized with a promoter sequence provides a burst dynamic backbone. Promoter regulation 

enables a promoter at a specific genomic location to effectively move within the integration 

landscape and “look” like a different site.  

To reduce error in correlation times to ~ +/-0.075 h for 12 h signatures, polyclonal data 

was sub-clustered into 34 groups, each containing ~60 cells. The correlation times for the LTR 

polyclonal population initially have a strong increasing trend until an abundance cutoff 

(annotated with grey vertical line in Figure 4A) after which the correlation decreases. Consistent 

with our other results, here a separate measure of stochastic behavior displays an identical 

abundance cutoff value in agreement with the two intensity dependent burst domains described 

in Figure 4. TSA addition yields a significantly different result than the TNF addition with a 

drastically different molecular mechanism (SI Figure 19). Although its sub-clusters are 

constrained to the burst dynamic trends as the non-drug case (Figure 4), correlation times fail to 

decrease in the higher abundance sub-clusters while BS significantly increases. This alludes to 

BS increasing through increases of km as opposed to decreases of koff. This TSA regime of non-

kinetic burst size modulation agrees with TSA experiments by Suter et al (19). The 

autocorrelation analysis of time-lapse microscopy data enabled the discrimination between 
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different modes of transcriptional regulation with drug additions (changes in koff versus km) that 

would not be possible with noise magnitude measurements alone. 
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 SI Figure 19: Noise and burst trends with TSA addition to the Ld2G poly population. 
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Short reporter half-lives are required to observe the underlying burst behavior 

Theory predicts that a long-lived reporter would “mask” underlying transcriptional bursting (8). 

Therefore, to study the burst dynamics, it is required that kon + koff  is within the same range as 

the mRNA and protein half-lives. In either extreme, cases of rapid degradation or stability the 

transcriptional bursting would be difficult to resolve. To demonstrate this, we expressed and 

performed flow cytometry on 22 isoclonal populations infected with a two-reporter system 

(LTRd2GFP + LTRmCherry), where the two LTR promoters were integrated at different 

integration sites. The resulting noise magnitudes demonstrate that the stable mCherry signal does 

not produce our observed signature of increasing burst size at high protein abundances (SI Figure 

20). TNF and TSA addition extend the increased burst size in the GFP case while extending the 

downward noise magnitude in the mCherry case. 
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SI Figure 20: (Left) Short-lived GFP captures transcriptional burst behavior (Right) As 

predicted by theory (see Equation S-2 and (7, 8)), a stable mCherry reporter masks the 

underlying burst dynamics. 

 



39 

 

Gene Expression Distributions and Noise Shift Validation 

Mean single-cell intensity distributions for three isoclones and three regions of the LTR 

polyclonal population were determined and represented with an overlaid gamma-distribution (red 

curves) (23). Noise magnitude values extracted from the fits are consistent with the 

autocorrelation-based noise analysis performed in the paper (Figs. 2D, 4C, and S1) and those 

found by others to quantify noise (23, 24).  

 

LTR iso
A83

LTR iso
B82

LTR iso
F32

LTR poly
LOW

LTR poly
MEDIUM

LTR poly
HIGH

Experiment Mean a (shape) b (scale) CV^2 FF

A83 iso 90.6393 3.8698 23.4222 0.258411 23.4222

B82 iso 44.8988 8.73762 5.13856 0.114448 5.13856

F32 iso 173.0792 3.07449 56.2954 0.325257 56.2954

LTR poly clust LOW 35.4338 3.35849 10.5505 0.297753 10.5505

LTR poly clust MED 75.0461 5.25513 14.2806 0.19029 14.2806

LTR poly clust HIGH 1148.1 12.4896 91.9263 0.080067 91.9263  

 

SI Figure 21: Gene-expression distributions for LTR isoclones and polyclone sub-clusters 

along with their gamma-function fit parameters. Distributions of fluorescence intensity (a.u., 

x-axis) are represented with an overlaid gamma-distribution (red curves) (23), and the resulting 

parameters agree with calculated autocorrelation-based noise magnitudes in the main text 

(Figures 2D, 4C, and S1).  
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 Supplementary Figure S1 

 

 

Supplementary Figure S1: Benchmarking and validation of microscopy noise 

measurements with conventional flow cytometry.  Top: microscopy noise maps for four 

isoclones from 18-h microscopy experiments. Bottom: Comparison of CV
2
 from microscopy 

(blue) to flow cytometry for the same clones (red). Inset: comparison of microscopy to flow 

cytometry CV’s show measurements are consistent with one another to within a constant. High-

frequency processing decreases noise magnitude from flow values consistently by ~0.25 for 18 h 

imaging durations. 
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Supplementary Figure S2 

 

 

Supplementary Figure S2: Noise-maps for EF-1α promoter in THP-1 cells (a monocyte cell 

line).  Shown is the noise-map scatter plot for ~400 genomic loci and the majority of cells fall in 

the upper right quadrant of the noise map where signatures dominated by transcriptional bursting 

are expected to shift. 
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Supplementary Figure S3  
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Supplementary Figure S3: Cell-cycle state has little effect on the LTR noise map.  Noise-

map scatter plots of the unsynchronized LTR-GFP population (left) and a synchronized LTR-

GFP population in which ~85-90% of cells are in the G1 phase of cell cycle (center). Both noise 

maps are shifted into the upper-right quadrant and have very similar noise-map centroids (right). 
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Supplementary Figure S4 
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Supplementary Figure S4: The HIV-1 LTR exhibits a greater noise-magnitude shift 

compared to EF-1α and UBC promoters. (Left) Noise-map centroids for the polyclonal 

populations of LTR, EF-1α and UBC promoters determined from noise maps in Figure 3 of the 

main text.  The LTR promoter has a higher noise magnitude and decreased correlation shift.  The 

error bars show ± 1 sigma uncertainty in the centroid positions as determined by the number of 

cells in the sample (SI Figure 14).  Noise-map centroids are determined from the base-line in 

Figure 2D (Clones 1 and 2),  (Right) Flow cytometry verification showing distributions for 

EF1A-d2G (blue) and LTR-d2G (green). CVLTR > CVEF1A. The stronger EF1A promoter displays 

increased mean expression compared tothe HIV-1 LTR, consistent with published findings (25). 
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Supplementary Figure S5 

 

 

Supplementary Figure S5: Sub-clustered GFP intensity trajectories of polyclonal 

populations. (Upper) LTR polyclonal cells separated into 11 clusters of 170 cells by their last 

intensity values. Sub-clusters decrease in intensity from the upper-left to lower-right panels. 

(Lower) 10 sub-clusters of Ef1A d2GFP poly clustered in the same way as the LTR polyclonal 

cells. The sub-clustering of the UBC populations is not shown.  
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Supplementary Figure S6 
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Supplementary Figure S6: LTR isoclones yield similar noise and burst trends to polyclonal 

sub-cluster processing when measured using traditional flow cytometry methods. 35 Ld2G 

isoclones were measured for their fluorescence distributions by flow cytometry. The 

measurements of a range of LTR isoclones yielded noise and burst dynamic trends similar to the 

polyclonal microscopy data. As described (16), the coefficient of variation squared and mean 

levels were used to quantify gene expression noise magnitude in the LTR isoclones which 

generally land along a single burst model line inversely proportional to the fluorescence 

abundance. Here, deviations from the trend are only observed at high abundances. At low 

abundances, the burst size remains constant, while the burst frequency increases (left of vertical 

gray line). At higher abundances, the BF hits an upper bound and plateaus, and abundance 
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increases through increases in burst size (identical to Figure 4a, right of vertical gray line). Upon 

TNF addition (middle row), shifts along the noise and burst trends identical to the polyclonal 

sub-clusters (Figures 5) are observed. Finally, the fold change in burst size and frequency are 

comparable to one another and use flow cytometry to support the main text observation that 

modulations in burst size and frequency are equivalent (Figure 4). 

 
The consistency in noise measurements between the two methods suggests that the high 

throughput image and signal processing of the genome-wide polyclonal microscopy signatures 

does not bias or affect the underlying biological general trends while providing a widespread 

integration dependent picture (Fig. 4B and Supplementary Figures S7 and S8). The polyclonal 

noise magnitude results are lower than the isoclone values. Finite duration imaging experiments 

are limited in the variability and correlations they can capture. Imaging experiments capture a 

high-frequency (HF) portion of the total underlying frequency domain which results in noise 

magnitudes that are ~30 to 60% of true values for 12-h intensity trajectories (see section above 

on “Noise map variance dependence on experiment duration”). In addition the sub-clustered 

polyclonal data aggregate many clones and are therefore less prone to outliers on the extreme 

ends/tails of the noise magnitude and burst trends compared to the 35 isoclones. 
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Supplementary Figure S7 
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Supplementary Figure S7: Two housekeeping promoters display increasing episodic 

expression with increasing intensity levels. The 2-state model and burst size expressions 

predict burst size = 0 for constitutive or continuous gene expression (Equations 1-3 and S-1). If 

C1 is constant among all three promoters (a fair assumption since C1 is a function of gm, gp, and 

kp), burst size can be calculated. Both UBC and EF1A have markedly less BS than the LTR 

(LTR starts at ~100 mRNA). Interestingly, the burst frequency range for these two strong 

promoters are consistent with the range of burst frequencies reported by Suter et al., (19), and 

further emphasizes that each individually span the kinetic range with varying integration site. 

Although much less bursty than the LTR, both the UBC and EF1A polyclonal sub-clusters have 
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noise-correlation trends and ranges comparable to the LTR case. The ~0.6-0.7 h shifts at higher 

intensity values indicate expression that is far from constitutive by both isoclone experiments 

(Figure 2D) and constitutive simulations (12-h HF-T50 = 1.55 h, SI Figure 4). The increase in 

correlation time can be explained by burst frequency modulation in the low intensity domain. At 

higher intensities correlation times are close to constant indicating a pure increase in 

transcription rate (km). In both UBC and EF1A cases, burst size and burst frequency appear to 

increase in a similar two-domain manner to the LTR and with burst size being increased by km at 

in the higher intensity domain. 
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